Contribution of the Incinerator to the Inorganic Composition of the PM10 Collected in Turin
Abstract
:1. Introduction
2. Experiments
2.1. Apparatus and Reagents
2.2. Study Area and Sampling
2.3. Choice of the Samples
2.4. Sample Pretreatment and Analysis
2.5. Statistic Data Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Finlayson-Pitts, B.J.; Pitts, J.N.J. Chemistry of the Upper and Lower Atmosphere; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science; Elsevier Academic Press: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Pope, C.A.I.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Costa, D.L.; Dreger, K.L. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environ. Earth Perspect. 1997, 105, 1053. [Google Scholar]
- Mukhtar, A.; Limbeck, A. Recent developments in assessment of bio-accessible trace metal fractions in airborne particulate matter: A review. Anal. Chim. Acta 2013, 774, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Pelfrene, A.; Cave, M.R.; Wragg, J.; Douay, F. In Vitro Investigations of Human Bioaccessibility from Reference Materials Using Simulated Lung Fluids. Int. J. Environ. Res. Pub. Health 2017, 14, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asgharian, B.; Hofmann, W.; Bergmann, R. Particle Deposition in a Multiple-Path Model of the Human Lung. Aerosol Sci. Technol. 2001, 34, 332–339. [Google Scholar] [CrossRef]
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef]
- Cassee, F.R.; Héroux, M.E.; Gerlofs-Nijland, M.E.; Kelly, F.J. Particulate matter beyond mass: Recent health evidence on the role of fractions, chemical consttuents ans sources of emission. Inhal. Toxicol. 2013, 25, 802–812. [Google Scholar] [CrossRef]
- Grigoratos, T.; Martini, G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef] [Green Version]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef]
- Amato, F. Non-Exhaust Emissions; Elsevier: Amsterdam, The Netherlandas, 2018. [Google Scholar]
- Li, Y.; Zhang, H.; Shao, L.; Zhou, X.; He, P. Impact of municipal solid waste incineration on heavy metals in the surrounding soils by multivariate analysis and lead isotope analysis. J. Environ. Sci. 2019, 82, 47–56. [Google Scholar] [CrossRef]
- Lucarelli, F.; Barrera, V.; Becagli, S.; Chiari, M.; Giannoni, M.; Nava, S.; Traversi, R.; Calzolai, G. Combined use of daily and hourly data sets for the source apportionment of particulate matter near a waste incinerator plant. Environ. Pollut. 2019, 247, 802–811. [Google Scholar] [CrossRef] [Green Version]
- Panepinto, D.; Zanetti, M.C. Municipal solid waste incineration plant: A multi-step approach to the evaluation of an energy-recovery configuration. Waste Manag. 2018, 73, 332–341. [Google Scholar] [CrossRef]
- Caviglia, C.; Confalonieri, G.; Corazzari, I.; Destefanis, E.; Mandrone, G.; Pastero, L.; Boero, R.; Pavese, A. Effects of particle size on properties and thermal inertization of bottom ashes (MSW of Turin’s incinerator). Waste Manag. 2019, 84, 340–354. [Google Scholar] [CrossRef] [PubMed]
- Panepinto, D.; Genon, G. Environmental evaluation of the electric and cogenerative configurations for the energy recovery of the Turin municipal solid waste incineration plant. Waste Manag. Res. 2014, 32, 670–680. [Google Scholar] [CrossRef]
- Maître, A.; Collot-Fertey, D.; Anzivino, L.; Marques, M.; Hours, M.; Stoklov, M. Municipal waste incinerators: Air and biological monitoring of workers for exposure to particles, metals, and organic compounds. Occup. Environ. Med. 2003, 60, 563–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meneses, M.; Schuhmacher, M.; Domingo, J.L. Health risk assessment of emissions of dioxins and furans from a municipal waste incinerator: Comparison with other emission sources. Environ. Int. 2004, 30, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Schuhmacher, M.; Domingo, J.L. Long-term study of environmental levels of dioxins and furans in the vicinity of a municipal solid waste incinerator. Environ. Int. 2006, 32, 397–404. [Google Scholar] [CrossRef]
- TRM S.p.A.—Trattamento Rifiuti Metropolitani. Available online: http://trm.to.it/en/ (accessed on 2 March 2020).
- Desiato, F.; Finardi, S.; Brusasca, G.; Morselli, M.G. TRANSALP 1989 Experimental campaign—Part I: Simulation of 3-D flow with diagnostic wind field models. Atmos. Environ. 1998, 32, 1141–1156. [Google Scholar] [CrossRef]
- Finardi, S.; De Maria, R.; D’Allura, A.; Cascone, C.; Calori, G.; Lollobrigida, F. A deterministic air quality forecasting system for Torino urban area, Italy. Environ. Model. Softw. 2008, 23, 344–355. [Google Scholar] [CrossRef]
- Cameletti, M.; Ignaccolo, R.; Bande, S. Comparing spatio-temporal models for particulate matter in Piemonte. Environmetrics 2011, 22, 985–996. [Google Scholar] [CrossRef]
- Bande, S.; D’Allura, A.; Finardi, S.; Giorcelli, M.; Muraro, M. Meteorological modelling influence on regional and ur-ban air pollution predictability. Croat. Meteorol. J. 2008, 43, 613–617. [Google Scholar]
- Gariazzo, C.; Silibello, C.; Finardi, S.; Radice, P.; Piersanti, A.; Calori, G.; Cecinato, A.; Perrino, C.; Nussio, F.; Cagnoli, M.; et al. A gas/aerosol air pollutants study over the urban area of Rome using a comprehensive chemical transport model. Atmos. Environ. 2007, 41, 7286–7303. [Google Scholar] [CrossRef]
- Finardi, S.; Baklanov, A.; Clappier, A.; Fay, B.; Joffre, S.; Karppinen, A.; Ødegård, V.; Slørdal, L.H.; Sofiev, M.; Sokhi, R.S.; et al. FUMAPEX Report: Improved Interfaces and Meteorological Pre-processors for Urban Air Pollution Models; Milan, Italy, 2005. [Google Scholar]
- Calori, G.; Clemente, M.; De Maria, R.; Finardi, S.; Lollobrigida, F.; Tinarelli, G. Air quality integrated modelling in Turin urban area. Environ. Model. Softw. 2006, 21, 468–476. [Google Scholar] [CrossRef]
- Maul, P.R.; Barber, F.R.; Martin, A. Some observations of the meso-scale transport of sulphur compunds in the rural East Midlands. Atmos. Environ. 1980, 14, 339–354. [Google Scholar] [CrossRef]
- Nieuwstadt, F.T.M. The steady-state height and resistance laws of the nocturnal boundary layer: Theory compared with Cabauw observations. Bound. Layer Meteorol. 1981, 2, 3–17. [Google Scholar] [CrossRef]
- Venkatram, A. Estimating the Monin-Obukhov length in the stable boundary layer for dispersion calculations. Bound. Layer Meteorol. 1980, 19, 481–485. [Google Scholar] [CrossRef]
- Einax, W.; Zwanziger, H.W.; Gei, S. Chemometrics in Environmental Analysis; Wiley-VHC: Weinhem, Germany, 1997. [Google Scholar]
- Massart, D.L.; Vandenginste, B.G.M.; Buydens, L.M.C.; De Jono, S.; Leqi, P.J.; Smeyers-Verbeke, J. Handbook of Chemometrics and Qualimetrics, Parts A and B; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Ruxton, G.D.; Beauchamp, G. Some suggestions about appropriate use of the Kruskal–Wallis test. Anim. Behav. 2008, 76, 1083–1087. [Google Scholar] [CrossRef]
- Sheppard, P.R.; Helsel, D.R.; Speakman, R.J.; Ridenour, G.; Witten, M.L. Additional analysis of dendrochemical data of Fallon, Nevada. Chem. Biol. Interact. 2012, 196, 96–101. [Google Scholar] [CrossRef]
- Farnham, I.M.; Singh, A.K.; Stetzenbach, K.J.; Johannesson, K.H. Treatment of nondetects in multivariate analysis of groundwater geochemistry data. Chemom. Intell. Lab. 2002, 60, 265–281. [Google Scholar] [CrossRef]
- Fan, J.; Yue, X.; Jing, Y.; Chen, Q.; Wang, S. Online monitoring of water-soluble ionic composition of PM10 during early summer over Lanzhou City. J. Environ. Sci. 2014, 26, 353–361. [Google Scholar] [CrossRef]
- Ochsenkühn, K.M.; Lyberopoulou, T.; Koumarianou, G.; Ochsenkühn-Petropoulou, M. Ion chromatographic and spectrometric determination of water-soluble compounds in airborne particulates, and their correlations in an industrial area in Attica, Greece. Microchim. Acta 2007, 160, 485–492. [Google Scholar] [CrossRef]
- Zhou, J.; Xing, Z.; Deng, J.; Du, K. Characterizing and sourcing ambient PM2.5 over key emission regions in China I: Water-soluble ions and carbonaceous fractions. Atmos. Environ. 2016, 135, 20–30. [Google Scholar] [CrossRef]
- Khoder, M.I.; Hassan, S.K. Weekday/weekend differences in ambient aerosol level and chemical characteristics of water-soluble components in the city centre. Atmos. Environ. 2008, 42, 7483–7493. [Google Scholar] [CrossRef]
- Conca, E.; Abollino, O.; Giacomino, A.; Buoso, S.; Traversi, R.; Becagli, S.; Grotti, M.; Malandrino, M. Source identification and temporal evolution of trace elements in PM10 collected near to Ny-Ålesund (Norwegian Arctic). Atmos. Environ. 2019, 203, 153–165. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Brehmer, C.; Lai, A.; Clark, S.; Shan, M.; Ni, K.; Ezzati, M.; Yang, X.; Baumgartner, J.; Schauer, J.J.; Carter, E. The Oxidative Potential of Personal and Household PM2.5 in a Rural Setting in Southwestern China. Environ. Sci. Technol. 2019, 53, 2788–2798. [Google Scholar] [CrossRef]
- Tao, J.; Zhang, L.; Engling, G.; Zhang, R.; Yang, Y.; Cao, J.; Zhu, C.; Wang, Q.; Luo, L. Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning. Atmos. Res. 2013, 122, 270–283. [Google Scholar] [CrossRef]
- Benetello, F.; Squizzato, S.; Hofer, A.; Masiol, M.; Khan, M.B.; Piazzalunga, A.; Fermo, P.; Formenton, G.M.; Rampazzo, G.; Pavoni, B. Estimation of local and external contributions of biomass burning to PM2.5 in an industrial zone included in a large urban settlement. Environ. Sci. Pollut. Res. 2017, 24, 2100–2115. [Google Scholar] [CrossRef]
- Pancras, J.P.; Ondov, J.M.; Poor, N.; Landis, M.S.; Stevens, R.K. Identification of sources and estimation of emission profiles from highly time-resolved pollutant measurements in Tampa, FL. Atmos. Environ. 2006, 40, 467–481. [Google Scholar] [CrossRef]
- Pancras, J.P.; Ondov, J.M.; Zeisler, R. Multi-element electrothermal AAS determination of 11 marker elements in fine ambient aerosol slurry samples collected with SEAS-II. Anal. Chim. Acta 2005, 538, 303–312. [Google Scholar] [CrossRef]
- Sakata, M.; Kurata, M.; Tanaka, N. Estimating contribution from municipal solid waste incineration to trace metal concentrations in Japanese urban atmosphere using lead as a marker element. Geochem. J. 2000, 34, 23–32. [Google Scholar] [CrossRef]
- Suarez, A.E.; Ondov, J.M. Ambient aerosol concentrations of elements resolved by size and by source: Contributions of some cytokine-active metals from coal- and oil-fired power plants. Energy Fuels 2002, 16, 562–568. [Google Scholar] [CrossRef]
- Font, A.; De Hoogh, K.; Leal-Sanchez, M.; Ashworth, D.C.; Brown, R.J.C.; Hansell, A.L.; Fuller, G.W. Using metal ratios to detect emissions from municipal waste incinerators in ambient air pollution data. Atmos. Environ. 2015, 113, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.M.; Fiala, M.J.; Park, D.; Wade, T.L. Review of pollutants in urban road dust and stormwater runoff: Part 1. Heavy metals released from vehicles. Int. J. Urban Sci. 2016, 20, 334–360. [Google Scholar] [CrossRef]
- Mummullage, S.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Use of physicochemical signatures to assess the sources of metals in urban road dust. Sci. Total Environ. 2016, 541, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Padoan, E.; Malandrino, M.; Giacomino, A.; Grosa, M.M.; Lollobrigida, F.; Martini, S.; Abollino, O. Spatial distribution and potential sources of trace elements in PM10 monitored in urban and rural sites of Piedmont Region. Chemosphere 2016, 145, 495–507. [Google Scholar] [CrossRef] [PubMed]
2012 | 2014 | 2011 TO1 [36] | 2011 TO2 [36] | |||
---|---|---|---|---|---|---|
Mean | 5th–95th perc. | Mean | 5th–95th perc. | Range | Range | |
Al | 170 | 33–470 | 250 | 98–530 | 18–430 | 12–1100 |
As | 0.48 | 0.059–1.7 | 1.1 | 0.26–2.9 | 0.18–1.5 | 0.19–4.7 |
Ba | 48 | 19–150 | 52 | 40–78 | 12–77 | 7.4–100 |
Ca | 580 | 140–1200 | 1700 | 840–5000 | 19–1500 | 270–2700 |
Cd | 0.32 | 0.12–0.83 | 0.29 | 0.020–2.7 | 0.19–1.1 | 0.32–5.5 |
Ce | 0.33 | 0.076–0.66 | 0.34 | 0.16–0.65 | 0–0.88 | 2.1–6.0 |
Co | 0.32 | 0.036–1.1 | 0.31 | 0.082–0.64 | 0.06–1.7 | 0.09–1.5 |
Cr | 6.4 | 2.4–12 | 5.2 | 2.3–12 | 1.9–14 | 2.6–34 |
Cu | 40 | 7.8–79 | 27 | 11–77 | 5.0–52 | 13–180 |
Fe | 1200 | 260–2200 | 720 | 230–1700 | 270–3200 | 430–6800 |
K | 360 | 61–1100 | 860 | 330–2100 | 79–1300 | 130–910 |
La | 0.19 | 0.076–0.34 | 0.12 | 0.060–0.34 | <0.007 | 2.1–4.0 |
Mg | 190 | 44–460 | 290 | 170–600 | 19–740 | 53–1600 |
Mn | 14 | 2.6–27 | 12 | 3.3–30 | 3.6–37 | 6.2–96 |
Mo | 3.4 | 1.6–7.3 | 3.4 | 1.1–7.3 | 0.83–16 | 1.3–14 |
Ni | 4.1 | 0.58–9.3 | 7.7 | 2.9–25.3 | 0–16 | 2.2–15 |
Pb | 8.5 | 0–26 | 10 | 3.2–25 | 3.8–45 | 0–40 |
Sb | 17 | 5.0–56 | 3.9 | 0.83–8.8 | 1.9–48 | 2.6–28 |
Sr | 0.35 | 0.12–1.5 | 3.1 | 1.1–7.1 | 0.04–4.4 | 0.44–11 |
Ti | 19 | 1.9–51 | 16 | 5.0–34 | 2.3–54 | 5.7–65 |
V | 1.3 | 0.20–3.1 | 1.2 | 0.34–2.2 | 1.1–5.7 | 0.73–5.7 |
Zn | 68 | 19–160 | 130 | 45–390 | 20–160 | 15–230 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conca, E.; Malandrino, M.; Giacomino, A.; Inaudi, P.; Buoso, S.; Bande, S.; Sacco, M.; Abollino, O. Contribution of the Incinerator to the Inorganic Composition of the PM10 Collected in Turin. Atmosphere 2020, 11, 400. https://doi.org/10.3390/atmos11040400
Conca E, Malandrino M, Giacomino A, Inaudi P, Buoso S, Bande S, Sacco M, Abollino O. Contribution of the Incinerator to the Inorganic Composition of the PM10 Collected in Turin. Atmosphere. 2020; 11(4):400. https://doi.org/10.3390/atmos11040400
Chicago/Turabian StyleConca, Eleonora, Mery Malandrino, Agnese Giacomino, Paolo Inaudi, Sandro Buoso, Stefano Bande, Milena Sacco, and Ornella Abollino. 2020. "Contribution of the Incinerator to the Inorganic Composition of the PM10 Collected in Turin" Atmosphere 11, no. 4: 400. https://doi.org/10.3390/atmos11040400
APA StyleConca, E., Malandrino, M., Giacomino, A., Inaudi, P., Buoso, S., Bande, S., Sacco, M., & Abollino, O. (2020). Contribution of the Incinerator to the Inorganic Composition of the PM10 Collected in Turin. Atmosphere, 11(4), 400. https://doi.org/10.3390/atmos11040400