Probability Density Functions in Homogeneous and Isotropic Magneto-Hydrodynamic Turbulence
Abstract
:1. Introduction
2. Derivation of a Hierarchy of PDF Equations
3. Functional Formulation of MHD Turbulence
3.1. Evolution Equation for the Characteristic Functional in MHD Turbulence
3.2. Cumulant Expansion and the Implications of Vanishing Higher Order Cumulants
4. Closure of the Single-Point Magnetic Field PDF Equation and the Assumptions of Isotropy and Homogeneity
5. Discussion
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Derivation of the PDF Hierarchy
Appendix A.1. Terms of the Evolution Equation for the Single-Point Velocity PDF
Appendix A.2. Terms of the Evolution Equation for the Single-Point Velocity PDF
Appendix B. Relation to the Moment Hierarchy Derived by Chandrasekhar
Appendix B.1. Evolution Equation for the Two-Point Velocity Field Correlation Tensor
Appendix B.2. Evolution Equation for the Two-Point Cross Helicity Correlation Tensor
Appendix B.3. Evolution Equation for the Two-Point Magnetic Field Correlation Tensor
Appendix C. Gaussian Approximation for the Joint Characteristic Functional of the MHD Equations
References
- Chandrasekhar, S. The Invariant Theory of Isotropic Turbulence in Magneto-Hydrodynamics. Proc. R. Soc. Lond. A 1951, 204, 435–449. [Google Scholar]
- Batchelor, G.K. On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc. R. Soc. Lond. A 1950, 201, 405–416. [Google Scholar]
- Steenbeck, M.; Krause, F.; Rädler, K.H. Berechnung der mittleren Lorentz-Feldstärke für ein elektrisch leitendes Medium in turbulenter, durch Coriolis-Kräfte beeinflußter Bewegung. Z. Naturforsch 1966, 21a, 369–376. [Google Scholar] [CrossRef]
- Parker, E.S. Chandrasekhar and magnetohydrodynamics. J. Astrophys. Astron. 1996, 17, 147–166. [Google Scholar] [CrossRef]
- Rädler, K.H. Mean-Field Dynamo Theory: Early Ideas and Today’s Problems. In Magnetohydrodynamics: Historical Evolution and Trends; Springer: Dordrecht, The Netherlands, 2007; pp. 55–72. [Google Scholar]
- Galtier, S.; Nazarenko, S.V.; Newell, A.C.; Pouquet, A. A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 2000, 63, 447–488. [Google Scholar] [CrossRef] [Green Version]
- Boldyrev, S. Spectrum of Magnetohydrodynamic Turbulence. Phys. Rev. Lett. 2006, 96, 115002. [Google Scholar] [CrossRef] [Green Version]
- Perez, J.C.; Boldyrev, S. Strong magnetohydrodynamic turbulence with cross helicity. Phys. Plasmas 2010, 17, 055903. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, J.; Homann, H.; Schäfer, T.; Grauer, R. Longitudinal and transverse structure functions in high Reynolds-number magneto-hydrodynamic turbulence. New J. Phys. 2016, 18, 125008. [Google Scholar] [CrossRef]
- Hill, R.J. Equations relating structure functions of all orders. J. Fluid Mech. 2001, 434, 379. [Google Scholar] [CrossRef] [Green Version]
- Yakhot, V. Probability densities in strong turbulence. Phys. D 2006, 215, 166–174. [Google Scholar] [CrossRef] [Green Version]
- Grauer, R.; Homann, H.; Pinton, J.F. Longitudinal and transverse structure functions in high-Reynolds-number turbulence. New J. Phys. 2012, 14, 63016. [Google Scholar] [CrossRef] [Green Version]
- Sorriso-Valvo, L.; Marino, R.; Carbone, V.; Noullez, A.; Lepreti, F.; Veltri, P.; Bruno, R.; Bavassano, B.; Pietropaolo, E. Observation of Inertial Energy Cascade in Interplanetary Space Plasma. Phys. Rev. Lett. 2007, 99, 115001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraternale, F.; Pogorelov, N.V.; Richardson, J.D.; Tordella, D. Magnetic turbulence spectra and intermittency in the heliosheath and in the local interstellar medium. Astrophys. J. 2019, 872, 40. [Google Scholar] [CrossRef] [Green Version]
- Bourgoin, M.; Marié, L.; Pétrélis, F.; Gasquet, C.; Guigon, A.; Luciani, J.B.; Moulin, M.; Namer, F.; Burguete, J.; Chiffaudel, A.; et al. Magnetohydrodynamics measurements in the von Kármán sodium experiment. Phys. Fluids 2002, 14, 3046–3058. [Google Scholar] [CrossRef] [Green Version]
- Giesecke, A.; Vogt, T.; Gundrum, T.; Stefani, F. Nonlinear Large Scale Flow in a Precessing Cylinder and Its Ability To Drive Dynamo Action. Phys. Rev. Lett. 2018, 120, 024502. [Google Scholar] [CrossRef] [Green Version]
- Shew, W.; Sisan, D.; Lathrop, D. Mechanically forced and thermally driven flows in liquid sodium. Magnetohydrodynamics 2002, 38, 121. [Google Scholar]
- Frisch, U. Turbulence; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Grauer, R.; Marliani, C. Analytical and numerical approaches to structure functions in magnetohydrodynamic turbulence. Phys. Scr. 1996, 1996, 38. [Google Scholar] [CrossRef]
- Politano, H.; Pouquet, A. Model of intermittency in magnetohydrodynamic turbulence. Phys. Rev. E 1995, 52, 636–641. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability; Courier Corporation: North Chelmsford, MA, USA, 2013. [Google Scholar]
- Friedrich, J.; Margazoglou, G.; Biferale, L.; Grauer, R. Multiscale velocity correlations in turbulence and Burgers turbulence: Fusion rules, Markov processes in scale, and multifractal predictions. Phys. Rev. E 2018, 98, 023104. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, J. Closure of the Lundgren-Monin-Novikov Hierarchy in Turbulence via a Markov Property of Velocity Increments in Scale. Ph.D. Thesis, Ruhr-University Bochum, Bochum, Germany, 2017. [Google Scholar]
- Lundgren, T.S. Distribution functions in the statistical theory of turbulence. Phys. Fluids 1967, 10, 969–975. [Google Scholar] [CrossRef]
- Monin, A.S. Equations of turbulent motion. J. Appl. Math. Mech. 1967, 31, 1057–1068. [Google Scholar] [CrossRef]
- Novikov, E.A. Kinetic Equations for a Vortex Field. Sov. Phys. Dokl. 1968, 12, 1006. [Google Scholar]
- Friedrich, R.; Daitche, A.; Kamps, O.; Lülff, J.; Voßkuhle, M.; Wilczek, M. The Lundgren–Monin–Novikov hierarchy: Kinetic equations for turbulence. Comptes Rendus Phys. 2012, 13, 929–953. [Google Scholar] [CrossRef] [Green Version]
- Robertson, H.P. The invariant theory of isotropic turbulence. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1940; Volume 36, pp. 209–223. [Google Scholar]
- Keller, L.V.; Friedman, A.A. Differentialgleichung für die turbulent Bewegung einer kompressiblen Flüssigkeit. In Proceedings of the First International Congress for Applied Mechanics, Delft, The Netherlands, 22–26 April 1924; pp. 395–405. [Google Scholar]
- Marino, R.; Sorriso-Valvo, L.; Carbone, V.; Noullez, A.; Bruno, R.; Bavassano, B. Heating the solar wind by a magnetohydrodynamic turbulent energy cascade. Astrophys. J. Lett. 2008, 677, L71. [Google Scholar] [CrossRef]
- Marino, R.; Sorriso-Valvo, L.; Carbone, V.; Veltri, P.; Noullez, A.; Bruno, R. The magnetohydrodynamic turbulent cascade in the ecliptic solar wind: Study of Ulysses data. Planet. Space Sci. 2011, 59, 592–597. [Google Scholar] [CrossRef]
- Ulinich, F.R.; Lyubimov, B.Y. The statistical theory of turbulence of an incompressible fluid at large Reynolds numbers. Sov. J. Exp. Theor. Phys. 1969, 28, 494. [Google Scholar]
- Stanisic, M.M. The Mathematical Theory of Turbulence; Springer: Berlin/Heidelberg, Germnay, 2012. [Google Scholar]
- Hopf, E. Statistical hydromechanics and functional calculus. J. Rat. Mech. Anal. 1952, 1, 87–123. [Google Scholar] [CrossRef]
- Grauer, R.; Krug, J.; Marliani, C. Scaling of high-order structure functions in magnetohydrodynamic turbulence. Phys. Lett. A 1994, 195, 335–338. [Google Scholar] [CrossRef]
- Friedrich, R.; Voßkuhle, M.; Kamps, O.; Wilczek, M. Two-point vorticity statistics in the inverse cascade of two-dimensional turbulence. Phys. Fluids 2012, 24, 125101. [Google Scholar] [CrossRef]
- Wilczek, M.; Meneveau, C. Pressure Hessian and viscous contributions to velocity gradient statistics based on Gaussian random fields. J. Fluid Mech. 2014, 756, 191–225. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S. The Theory of Axisymmetric Turbulence. Philos. Trans. R. Soc. A 1950, 242, 557–577. [Google Scholar]
- Wilczek, M.; Daitche, A.; Friedrich, R. On the velocity distribution in homogeneous isotropic turbulence: Correlations and deviations from Gaussianity. J. Fluid Mech. 2011, 676, 191–217. [Google Scholar] [CrossRef]
- Müller, W.C.; Biskamp, D.; Grappin, R. Statistical anisotropy of magnetohydrodynamic turbulence. Phys. Rev. E 2003, 67, 066302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montgomery, D.; Turner, L. Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field. Phys. Fluids 1981, 24, 825–831. [Google Scholar] [CrossRef] [Green Version]
- Dasso, S.; Milano, L.J.; Matthaeus, W.H.; Smith, C.W. Anisotropy in fast and slow solar wind fluctuations. Astrophys. J. Lett. 2005, 635, L181. [Google Scholar] [CrossRef]
- Nigro, G.; Pongkitiwanichakul, P.; Cattaneo, F.; Tobias, S. What is a large-scale dynamo? Mon. Not. R. Astron. Soc. 2017, 464, L119–L123. [Google Scholar] [CrossRef]
- Pongkitiwanichakul, P.; Nigro, G.; Cattaneo, F.; Tobias, S.M. Shear-driven dynamo waves in the fully nonlinear regime. Astrophys. J. 2016, 825, 23. [Google Scholar] [CrossRef] [Green Version]
- Feraco, F.; Marino, R.; Pumir, A.; Primavera, L.; Mininni, P.D.; Pouquet, A.; Rosenberg, D. Vertical drafts and mixing in stratified turbulence: Sharp transition with Froude number. Europhys. Lett. 2018, 123, 44002. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friedrich, J. Probability Density Functions in Homogeneous and Isotropic Magneto-Hydrodynamic Turbulence. Atmosphere 2020, 11, 382. https://doi.org/10.3390/atmos11040382
Friedrich J. Probability Density Functions in Homogeneous and Isotropic Magneto-Hydrodynamic Turbulence. Atmosphere. 2020; 11(4):382. https://doi.org/10.3390/atmos11040382
Chicago/Turabian StyleFriedrich, Jan. 2020. "Probability Density Functions in Homogeneous and Isotropic Magneto-Hydrodynamic Turbulence" Atmosphere 11, no. 4: 382. https://doi.org/10.3390/atmos11040382
APA StyleFriedrich, J. (2020). Probability Density Functions in Homogeneous and Isotropic Magneto-Hydrodynamic Turbulence. Atmosphere, 11(4), 382. https://doi.org/10.3390/atmos11040382