Vision-Based Contactless Pose Estimation for Human Thermal Discomfort
Abstract
:1. Introduction
2. Methodology
2.1. Perception of Human Body Key Points
2.2. Extraction of Key Points
2.3. Pose Estimation
2.4. Display of the Poses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- U.S. Energy Information Administration. International Energy Outlook 2017. Available online: https://www.eia.gov/outlooks/archive/ieo17/pdf/0484(2017).pdf (accessed on 11 August 2019).
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- ASHRAE. ASHRAE Standard 55: 2017, Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigeration and Air-Conditioning Engineers: Atlanta, GA, USA, 2017. [Google Scholar]
- ASHRAE. Standard 62.1: 2016, Ventilation for Acceptable Indoor Air Quality; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2016. [Google Scholar]
- Ghahramani, A.; Zhang, K.; Dutta, K.; Yang, Z.; Becerik-Gerber, B. Energy savings from temperature setpoints and deadband: Quantifying the influence of building and system properties on savings. Appl. Energy 2016, 165, 930–942. [Google Scholar] [CrossRef] [Green Version]
- Ghahramani, A.; Dutta, K.; Yang, Z.; Ozcelik, G.; Becerik-Gerber, B. Quantifying the influence of temperature setpoints, building and system features on energy consumption. In Proceedings of the 2015 Winter Simulation Conference (WSC), Huntington Beach, CA, USA, 6–9 December 2015; pp. 1000–1011. [Google Scholar]
- ISO. ISO Standard 7730. Ergonomics of the Thermal Environment―Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- Sim, S.Y.; Koh, M.J.; Joo, K.M.; Noh, S.; Park, S.; Kim, Y.H.; Park, K.S. Estimation of thermal sensation based on wrist skin temperatures. Sensors 2016, 16, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, C.; Zhang, H.; Arens, E.; Lian, Z. Machine learning approaches to predict thermal demands using skin temperatures: Steady-state conditions. Build. Environ. 2017, 114, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ghahramani, A.; Castro, G.; Becerik-Gerber, B.; Yu, X. Infrared thermography of human face for monitoring thermoregulation performance and estimating personal thermal comfort. Build. Environ. 2016, 109, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Nkurikiyeyezu, K.N.; Suzuki, Y.; Tobe, Y.; Lopez, G.F.; Itao, K. Heart rate variability as an indicator of thermal comfort state. In Proceedings of the 2017 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Kanazawa, Japan, 19–22 September 2017; pp. 1510–1512. [Google Scholar]
- Barrios, L.; Kleiminger, W. The Comfstat-automatically sensing thermal comfort for smart thermostats. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), Kona, HI, USA, 13–17 March 2017; pp. 257–266. [Google Scholar]
- Kawakami, K.; Ogawa, T.; Haseyama, M. Blood circulation based on PPG signals for thermal comfort evaluation. In Proceedings of the 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE), Nara, Japan, 9–12 October 2018; pp. 194–195. [Google Scholar]
- Chaudhuri, T.; Zhai, D.; Soh, Y.C.; Li, H.; Xie, L.; Ou, X. Convolutional neural network and kernel methods for occupant thermal state detection using wearable technology. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- Salamone, F.; Belussi, L.; Currò, C.; Danza, L.; Ghellere, M.; Guazzi, G.; Lenzi, B.; Megale, V.; Meroni, I. Integrated method for personal thermal comfort assessment and optimization through users’ feedback, IoT and machine learning: A case study. Sensors 2018, 18, 1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, X.; Yang, B.; Olofsson, T.; Liu, G.; Li, H. A pilot study of online non-invasive measuring technology based on video magnification to determine skin temperature. Build. Environ. 2017, 121, 1–10. [Google Scholar] [CrossRef]
- Cheng, X.; Yang, B.; Hedman, A.; Olofsson, T.; Li, H.; Van Gool, L. NIDL: A pilot study of contactless measurement of skin temperature for intelligent building. Energy Build. 2019, 198, 340–352. [Google Scholar] [CrossRef]
- Cheng, X.; Yang, B.; Tan, K.; Isaksson, E.; Li, L.; Hedman, A.; Olofsson, T.; Li, H. A contactless measuring method of skin temperature based on the skin sensitivity index and deep learning. Appl. Sci. 2019, 9, 1375. [Google Scholar] [CrossRef] [Green Version]
- Meier, A.; Cheng, X.; Dyer, W.; Chris, G.; Olofsson, T.; Yang, B. Non-invasive assessments of thermal discomfort in real time. In Proceedings of the 1st International Conference on Comfort at the Extremes: Energy, Economy and Climate, Heriot Watt University, Dubai, United Arab Emirates, 10–11 April 2019; pp. 692–707. [Google Scholar]
- Yang, B.; Cheng, X.; Dai, D.; Olofsson, T.; Li, H.; Meier, A. Macro pose based non-invasive thermal comfort perception for energy efficiency. arXiv 2018, arXiv:1811.07690. [Google Scholar]
- Wei, S.E.; Ramakrishna, V.; Kanade, T.; Sheikh, Y. Convolutional pose machines. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4724–4732. [Google Scholar]
- Simon, T.; Joo, H.; Matthews, I.; Sheikh, Y. Hand keypoint detection in single images using multiview bootstrapping. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1145–1153. [Google Scholar]
- Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime multi-person 2d pose estimation using part affinity fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7291–7299. [Google Scholar]
- Qiao, S.; Wang, Y.; Li, J. Real-time human gesture grading based on OpenPose. In Proceedings of the 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 14–16 October 2017; pp. 1–6. [Google Scholar]
The Pose Estimation Algorithm of the Splayed Posture |
---|
Input: key points array: D = {(x0,y0),(x1,y1),…,(x24,y24)} Process: 1: calculate Euclidean distance from left (right) wrist point to left (right) hip point d 2: calculate reference distance d′ 3: calculate the ratio of d′ to d ρ 4: if ρ > 0.7 and x3 < x4 and x6 > x7 Output: splayed posture, hot |
The Pose Estimation Algorithm of Hair Movement |
---|
Input: key points array: D = {(x0,y0),(x1,y1),…,(x24,y24)} Process: 1: initialize the counter: count=0 2: for i = 1,…,60 do 3: calculate the distance between the left ear point in Di and the left ear point in Di + 1 d1 4: calculate the distance between the nose point in Di and the nose point in Di + 1 d1 5: if d1 > 15 and d2 < 5 6: count+=1 7: end for 8: if count > 60/10 Output: hair movement, hot |
The Pose Estimation Algorithm of Rubbing Hands |
---|
Input: key points array: D = {(x0,y0),(x1,y1),…,(x24,y24)} Process: 1: initialize the counter: count=0 2: calculate Euclidean distance from left wrist to right wrist d 3: calculate reference distance d′ 4: calculate the ratio of d′ to d ρ 5: if ρ >1: 6: for i = 1,…,60 do 7: calculate the distance between the left wrist point in Di and the left wrist point in Di + 1 d1 8: if 2 < d1 <15 9: count+=1 10: end for 11: if count > ⌊60/8⌋ Output: hand rubbing, cold |
the pose estimation algorithm of buttoning up |
---|
Input: key points array: D ={(x0,y0),(x1,y1),…,(x24,y24)} Process: 1: calculate Euclidean distance from left (right) wrist point to neck point d 2: calculate reference distance d′ 3: calculate the ratio of d′ to d ρ 4: if ρ > 1 and x4 < x5 Output: buttoning up, cold |
The Estimation Algorithm of Shivering |
---|
Input: key points array: D ={(x0,y0),(x1,y1),…,(x69,y69)} Process: 1: initialize the counter: count=0 2: for i = 1,…,60 do 3: calculate the distance between three lip points in Di and three lip points in Di + 1 d1,d2,d3 4: if 1.3 < d1 < 5 and 1.3 < d2 < 5 and 1.3 < d3 < 5 5: count+=1 6: end for 7: if count > 60/10 Output: shivering, cold |
ID | Gender | Age | Height (m) | Weight (kg) |
---|---|---|---|---|
1 | male | 25 | 1.83 | 73 |
2 | male | 25 | 1.77 | 74 |
3 | male | 23 | 1.76 | 63 |
4 | male | 25 | 1.69 | 95 |
5 | male | 23 | 1.60 | 58 |
6 | male | 26 | 1.75 | 71 |
7 | male | 25 | 1.69 | 64 |
8 | male | 25 | 1.70 | 57 |
9 | male | 25 | 1.77 | 70 |
10 | male | 24 | 1.73 | 65 |
11 | male | 25 | 1.77 | 74 |
12 | male | 27 | 1.78 | 68 |
13 | male | 26 | 1.70 | 60 |
14 | female | 25 | 1.58 | 51 |
15 | male | 25 | 1.70 | 63 |
16 | male | 25 | 1.70 | 72 |
State | Posture |
---|---|
hot | splayed posture |
hair movement | |
cold | hand rubbing |
buttoning up | |
shivering |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, J.; Cheng, X.; Yang, B.; Li, Z.; Ren, J.; Olofsson, T.; Li, H. Vision-Based Contactless Pose Estimation for Human Thermal Discomfort. Atmosphere 2020, 11, 376. https://doi.org/10.3390/atmos11040376
Qian J, Cheng X, Yang B, Li Z, Ren J, Olofsson T, Li H. Vision-Based Contactless Pose Estimation for Human Thermal Discomfort. Atmosphere. 2020; 11(4):376. https://doi.org/10.3390/atmos11040376
Chicago/Turabian StyleQian, Junpeng, Xiaogang Cheng, Bin Yang, Zhe Li, Junchi Ren, Thomas Olofsson, and Haibo Li. 2020. "Vision-Based Contactless Pose Estimation for Human Thermal Discomfort" Atmosphere 11, no. 4: 376. https://doi.org/10.3390/atmos11040376
APA StyleQian, J., Cheng, X., Yang, B., Li, Z., Ren, J., Olofsson, T., & Li, H. (2020). Vision-Based Contactless Pose Estimation for Human Thermal Discomfort. Atmosphere, 11(4), 376. https://doi.org/10.3390/atmos11040376