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Abstract: Thermal comfort has become a topic issue in building performance assessment as well as
energy efficiency. Three methods are mainly recognized for its assessment. Two of them based on
standardized methodologies, face the problem by considering the indoor environment in steady-state
conditions (PMV and PPD) and users as active subjects whose thermal perception is influenced
by outdoor climatic conditions (adaptive approach). The latter method is the starting point to
investigate thermal comfort from an overall perspective by considering endogenous variables besides
the traditional physical and environmental ones. Following this perspective, the paper describes the
results of an in-field investigation of thermal conditions through the use of nearable and wearable
solutions, parametric models and machine learning techniques. The aim of the research is the
exploration of the reliability of IoT-based solutions combined with advanced algorithms, in order to
create a replicable framework for the assessment and improvement of user thermal satisfaction.
For this purpose, an experimental test in real offices was carried out involving eight workers.
Parametric models are applied for the assessment of thermal comfort; IoT solutions are used
to monitor the environmental variables and the users’ parameters; the machine learning CART
method allows to predict the users’ profile and the thermal comfort perception respect to the
indoor environment.

Keywords: indoor thermal comfort; wearable; nearable; IoT; machine learning; parametric models

1. Introduction

Thermal Comfort (TC) is defined as the psychophysical satisfaction of an individual immersed
in a thermal environment [1]. As described in the EN ISO 7730:2005 standard [2], TC is influenced
by six factors [3], summarized in two categories: four objective variables: air temperature (Tair),
relative humidity (RH), air velocity (Vair), and mean radiant temperature (Trad) and two subjective
variables: metabolic activity and clothing. Over the years, several studies have highlighted how the
thermal sensation of users further depends on factors linked to human characteristics, e.g., age, gender,
pathologies, etc. [4–11]. Adaptive approaches, on the basis of the subjective response of individuals to
thermal stimuli, have been proposed in order to include these factors in thermal assessment process.
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At present, there are two main approaches to assess the TC: the thermal balance or rational method
and the adaptive method (AM) [12,13]. The former is mainly based on the tests carried out by
Fanger on a sample of 1296 Danish students in specific climate controlled chambers under steady
state conditions [14,15]. The participants were dressed in standard clothing and performed standard
activities. The only variable was the exposure to different environmental conditions. Starting from
these experiments Fanger defined an equation that describes the TC such as the balance between
the current thermal flow on human body, in a given environment, and that corresponding to an
optimal comfort in relation to a specific activity. This equation allows to define the so called Predicted
Mean Vote (PMV) index. Therefore, the Predicted Percentage of Dissatisfied (PPD) index expresses
the percentage of dissatisfied as a function of thermal sensation perceived by the users and was
calculated as a function of the PMV. Both the indices are used to define the TC level of an indoor
environment. The indices are commonly adopted for the assessment of indoor spaces equipped
with HVAC systems or in naturally ventilated buildings, if the expectancy factor is known [15,16].
Furthermore the EN 15251:2007 considers the PMV level to define the operative temperature (To)
ranges for energy calculations [17].

In the adaptive approaches, the main object of the analysis is the final users’ satisfaction in
order to optimize the thermal acceptability of the indoor environment. The AM described by the
ASHRAE 55:2017 standard [18] couples the To with the mean outdoor temperature. More generally,
the user’s adaptation to thermal stimuli can be divided into three categories: behavioral, physiological
and psychological [19–23]. The former includes all conscious and unconscious modifications that an
individual carries out by changing the heat and mass flows to regulate the thermal balance of the own
body (change of clothing, use of air-conditioning systems, etc.). The physiological adaptation includes
the changes in the physiological response with respect to the environmental exposure (acclimatization).
The latter represents a wrong perception or a response to stimuli linked to past experiences.

Several studies [24–27] investigated TC in a multi-domain approach modifying the comfort
models according to subjective assessment. In particular, in [23] a pulse sensor is used in Ambient
Assisted Living to identify the heart rate [bpm] (HR) and consequently the metabolic rate following
the algorithm presented in ISO 8996 [28] as a key parameter in the determination of the PMV. In [25]
the quantitative estimation of the thermal comfort level in sports facilities is described with the aim
of supporting the development of comfort-based metering and energy control systems. In [26] the
authors propose a data-driven approach for real time prediction of individual thermal comfort level
based on the classical objective and subjective data without the use of biometric values. In [27] the
authors define a method to predict individuals’ thermal preference using occupant heating and cooling
behavior and machine learning (ML) techniques.

The state-of-art demonstrates how the assessment of TC in the built environment is still a challenge.
The design of comfortable and healthy indoor environments should be the goal of professionals.
Researchers constantly investigate this issue in order to define new methodologies and tools for the
prediction and assessment of TC. The current trend is the deep evaluation of users’ perception.
The application of Internet of Things (IoT) solutions and advanced algorithms is becoming an
alternative to traditional methods, both for monitoring and calculation process.

Following this path, the paper describes a framework [29] for the assessment of the thermal
conditions of users through the analysis of specific psychophysical conditions, the application of
IoT-based solutions, the assessment of user’s feedback, the use of parametric models and ML
techniques; the methodology overcomes the limitation of physical-based models by considering several
factors related to human sensation and the complex state of mind that interacts in TC perception [30].
A merit of the proposed method is the detection of internal environmental variables close to users,
in addition to the biometric parameters. In this way the overall personal thermal conditions of each user
are investigated by considering the actual sensation and the external influencing forces. The method is
the basis for the development of individual control of environmental variables.
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The Thermal Sensation Vote (TSV) expressed by the user through a web-based survey are
compared with the indices provided by the Standards EN ISO 7730:2005 and ASHRAE 55:2017,
PMV and the Graphic Comfort Zone Method (GCZM), respectively. The data collected during an
experimental campaign in an office building are threaded through ML techniques in order to identify
advanced algorithms for the prediction of the user profile and the related optimal TC conditions.

2. Description of the Framework

The framework consists of the following parts:

• a monitoring system composed by:

# a nearable device (a term composed by the words “near” and “wearable”) for the
monitoring of the environmental parameters nearby the user;

# a wearable device for the monitoring of subjective variables;

• a web-based survey for the detection of users feedback in terms of TSV;
• a parametric model to assess the real TC conditions.

2.1. Monitoring Systems

2.1.1. Nearable System

The nearable system applied in the framework is based on low-cost sensors and open-source
hardware able to monitor indoor environmental parameters (air temperature, relative humidity,
radiant temperature, air velocity, CO2 concentration, illuminance level) useful to assess different
aspects of the Indoor Environmental Quality (IEQ) [31,32]. The accuracy of the sensors complies the
requirements provided by the ISO 7726:1998 [33]. Table 1 reports the characteristics of the sensors used
for TC assessment.

Table 1. Characteristics of sensors used for TC assessment.

Sensor Typical Range Response Time Accuracy

Relative humidity: capacitive humidity sensor 0 ÷ 100% >2 s ±2%
Air temperature: thermistor −40 ÷ +80 ◦C >2 s ±0.5 ◦C

Radiant temperature: 10 k thermistor inside a 40 mm
diameter hollow sphere, painted in matt black −55 ÷ +60 ◦C <10 s ±0.2 ◦C

Air velocity: low-cost hot wire anemometer 0 ÷ 27 m/s <2 s ±4%

The technical characteristics of the low-cost hot wire anemometer are not stated but have been
assessed by calibration as reported in [34]. Tests conducted in the 0 ÷ 6 m/s range through the
methodology described in [31] allowed to verify the good behavior of the low-cost sensor through
direct comparison with a professional one.

2.1.2. Wearable System

The wearable device is the Empatica E4 wristband (Empatica Inc., Cambridge, MA, USA). It is a
class II medical device according to the FDA 21 CFR Part 860.3 regulations and is equipped with the
following sensors:

• a photoplethysmography (PPG) sensor for the detection of the heart rate (HR) [35];
• an electrodermal activity (EDA) sensor;
• an infrared thermopile;
• a 3-axis accelerometer.
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The Empatica E4 wristband was chosen for its verified accuracy [36] and because it is the most
practical solution for the purpose of the research. Table 2 reports the characteristics of the sensors used
for the acquisition of biometric data.

Table 2. Characteristics of sensors used for biometric data acquisition.

Sensor Typical Range Sampling Frequency

PPG sensor - 64 Hz
EDA sensor 0.01 ÷ 100 µS 4 Hz

Skin Temperature sensor −40 ÷ +85 ◦C 4 Hz
3-axes accelerometer ±2 g 32 Hz

2.2. Web Based Survey

The web-based survey was defined according to the guidelines provided by the ASHRAE 55:2017
standard. It is realized using a Google Forms model allowing a free access at the users. The data
are automatically collected in a Google spreadsheet. The information requested at each user are:
position occupied in the indoor environment, activity performed, clothing characteristics and thermal
sensation on the 7 point scale on general comfort where −3 is equivalent to “cold”, +3 to “hot” and 0
to “neutral” sensation.

The analysis of the survey allowed the identification of the insulation levels related to the clothing,
the metabolic rate [37–40] and the thermal sensation of the individuals. The thermal resistance
of the clothing is determined in compliance with the Annex C of the EN ISO 7730:2005 Standard.
Each clothing garment is characterized by a specific insulation value, expressed in clo (clothing unit,
1 clo = 0.155 m2K/W); the overall thermal resistance is the algebraic sum of the single value of the
thermal resistance [41]. The standard provides an additional thermal resistance for sedentary activities
due to the type of chair, corresponding to an incremental value equal to 0.17 clo [42]. The standard
corrects the static insulation considering a dynamic effect due to both air and body movements [43,44].
Table 3 reports the considered average clothing insulation values for each user.

Table 3. Dynamic insulation of clothing.

Workstation Clothing Insulation [clo]

1a 0.98
2a 0.89
2b 1.01
3a 0.9
4a 0.94
4b 0.94
4c 0.91
5a 1.07

The common activity of the users provided by the surveys is “typing”. As reported in the
Annex B of the EN ISO 7730:2005 standard, for sedentary activity in office, a metabolic rate of 1.2 met
is considered.

2.3. Parametric Model

The parametric model is realized using Grasshopper, a graphical algorithm editor tightly
integrated with Rhino’s 3-D modeling tools [45] and the following plugin:

• Ladybug tools, to assess the TC [46,47] based on PMV and PPD and GCZM;
• TT Toolbox, to import and to export data from a generic database in .csv or .xls formats [48].
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3. Application of the Framework

3.1. First Application and General Data

The system was installed on the desktop of eight workstations of a two-story office building
located in San Giuliano Milanese, near Milan (Italy) and eight individuals were involved in the survey.
The workstations are placed in five offices, three on the ground floor and two on the first floor of the
building (Figure 1). Four offices (1, 3, 4, 5) have similar geometrical and morphological characteristics;
office n.2 is a double size open space. Offices 1 and 3 have double orientation, East and South-facing;
offices 2, 4 and 5 have a single orientation, East-facing. The envelope of the building is characterized
by: an external wall consisting of a non-insulated double layer of masonry brick with internal plaster
finishing; a concrete basement for floor and a mixed concrete-brick roof; single-pane glass windows
with iron frame with the same dimensions. Offices 1 and 3 have two windows, one for each orientation;
offices 4 and 5 have a single window each; office 2 has two windows. Each window is equipped with
an internal manually-oriented curtain. The heating system consists of radiators placed below the
windows. Furthermore, each office is equipped with a manually-controlled reversible heat pump.
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The typical installation of the considered monitoring system on the office desktop is shown in
Figure 2.
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Figure 2. Monitoring system as installed in an office desktop.

Table 4 reports the areas of the offices, the personal data of the involved users and the periods of
the tests. All subjects gave their informed consent for inclusion before they participated in the study.

Table 4. Area of the office and personal data of the users involved in the test.

N. Floor Area [m2] User Age [y] Weight [kg] Height [cm] Gender [-] Position [-] Period of Test [-]

1 21.72 a 61 61.4 175 male Senior researcher II. 13–17 November 2017

2 41.94
a 39 81 178 male Researcher I. 6–10 November 2017
b 35 85 179 male Researcher I. 6–10 November 2017

3 21.72 a 43 46 164 female Researcher III. 20–24 November 2017

4 20.69
a 29 60 160 female Junior researcher IV. 27–30 November 2017
b 37 57 179 female Researcher III. 20–24 November 2017
c 33 80.2 191 male Technician IV. 27–30 November 2017

5 20.26 a 35 70 177 male Researcher II. 13–17 November 2017

Table 5 reports the weather data related to the period of the test.

Table 5. Weather data for the test periods—minimum, average and maximum values of: external air
temperature, relative humidity, solar radiation (diurnal average of solar radiation is from 9 a.m. to
5 p.m.), wind speed, rainfall (higher than 1.0 mm).

Period External
Environmental Variable Min Avg Max Days

(Prec. > 1.0 mm)
Cumulative

Precipitations [mm]

I. 6–10 November 2017

Air temperature [◦C] 5.8 9.3 13.3 - -
Relative humidity [%] 76.3 98.1 99.7

Solar Radiation [W/m2] 4.5 102.8 409.2 - -
Wind speed [m/s] 0.2 1.4 2.6 - -

Rain [mm] - - - 3/5 14.8

II. 13–17 November 2017

Air temperature [◦C] −0.1 6.2 14.3 - -
Relative humidity [%] 36.8 85.7 100.0

Solar Radiation [W/m2] 0.3 222.0 475.8 - -
Wind speed [m/s] 0.0 1.3 5.2 - -

Rain [mm] - - - 0/5 0.0

III. 20–24 November 2017

Air temperature [◦C] 0.6 7.2 14.3 - -
Relative humidity [%] 58.2 96.2 100.0

Solar Radiation [W/m2] 1.8 143.4 415.5 - -
Wind speed [m/s] 0.1 1.1 2.5 - -

Rain [mm] - - - 0/5 0.0

IV. 27–30 November 2017

Air temperature [◦C] −3.2 2.5 11.4 - -
Relative humidity [%] 25.8 88.8 99.8

Solar Radiation [W/m2] 0.8 172.0 459.5 - -
Wind speed [m/s] 0.2 1.5 3.9 - -

Rain [mm] - - - 1/4 1.8
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3.2. Objective Assessment of Thermal Comfort

The monitored environmental variables have been used along with the users’ subjective variables
for the calculation of PMV. The PMV values have been approximated to an integer number (PMVint)
defined considering the ranges reported in Table 6.

Table 6. PMVint and related range of PMV.

PMVint PMV

3 (hot) >2.5
2 (warm) 2.5:1.5

1 (slightly warm) 1.5:0.5
0 (neutral) −0.5:0.5

−1 (slightly cool) −1.5:−0.5
−2 (cool) −2.5:−1.5
−3 (cold) <−2.5

The data collected by the survey are used to verify the difference between the calculated PMV
and the TSV. The TSVs are compared with the equivalent PMVint defined considering the average
of the environmental value recorded in the previous 5 min. Table 7 shows the percentage difference
between the sensation vote expressed by the feedbacks of each user and the related calculated PMVint.

Table 7. PMVint vs. TSV.

Workstation PMVint vs. TSV Difference

1a 16.67%
2a 72.73%
2b 61.54%
3a 25.00%
4a 45.83%
4b 29.17%
4c 44.44%
5a 10.53%

The greatest difference between the indices is recorded for users 2a and 2b with a PMVint value
higher than 60% of the TSV and for users 4a and 4c with a value greater than 40%.

Moreover, the analysis makes use of the psychrometric chart to identify the comfort zone according
to the GCZM and the adapted Graphic Comfort Zone (GCZa), defined as the environmental variables
corresponding to TSV equal to 0. Figure 3 shows the comfort zone [49,50] according to the GCZM
(black line) and the GCZa (pink line) for users 5a. The black line in Figure 3 is defined as a function
of the thermal insulation, the metabolic rate, the radiant temperature and the air velocity. The pink
line is based on the environmental data averaged over a period of a minute at the time where the user
5a has provided a TSV equal to 0. The differences in term of comfort zone are quite evident, with a
more restricted area in the approach based on the user’s feedback. The new individual comfort zone
could be considered in a hypothetical adaptive control and optimization strategy of the office thermal
plant system.

In this regard it is possible to consider, as hypothesis, two users, 5a and 4a, located in the same
office (Figure 4). It is possible to identify an optimal TC level considering the intersection of the
personalized comfort zones for the two users, by identifying the GCZa based on the user’s feedback.

As displayed above, the parametric model allows to calculate and to display the differences
between the standard and personal comfort perception. The framework can use also the data collected
by wearable and nearable devices to investigate the interactions between the variables or to provide
predictions of the users, as described in the following paragraphs.
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3.3. Dataset Definition and Machine Learning Approach

All users have been informed about how to use the nearable and wearable devices and how to
compile the web based survey. The recorded data by the wearable device have been verified and
filtered considering a ML algorithm for automatically detecting EDA artefacts [51], generated from
electronic noise or variation in the contact between the skin and the recording electrode caused by
pressure, excessive movement, or adjustment of the device. The algorithm is available on a web
page [52] or by downloading a Python script. The application of algorithm for the data check is
essential to detect and filter noise and artefacts [52]. Through this algorithm the raw data, acquired
with a sampling frequency of 4 Hz, are divided in periods of 5 s. Considering a binary classification,
for all of these periods, a noise classification number equal to −1 (noise data, in red background in
Figure 5), or 1 (clean data, in white background in Figure 5) is attributed.

Then a first dataset is defined, composed by the data of the nearable device aggregated with those
of the wearable one elaborated with the EDA explorer algorithm. The result is a dataset structured
considering 15,456 instances (rows) and 15 attributes (Time, Z-axis, Y-axis, X-axis, EDA_explorer_label,
skin temperature-Tskin-, EDA, HR, Tair, RH, Trad, air velocity, CO2 concentration, illuminance level
and User). Then a new dataset was built excluding: time dependencies, subjective variable related to
the accelerations in the three axis, scarcely significant given the sedentary activities of the involved
users, and environmental variable such as CO2 concentration and illuminance level. At present,
the attention of the experimentation is paid on the environmental and subjective parameters that
directly describe the TC conditions and allow the identification of user profile. Future developments
will provide the analysis of the correlation between other environmental parameters, such as CO2 and
illuminance level, and the thermal sensation through ML techniques.Sensors 2018, 18, x FOR PEER REVIEW  10 of 19 
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Figure 5. EDA comparison: (a) good series of data; (b) bad series of data.

Finally, the information related to Tair and Trad are used for the calculation of To while the air
velocity is excluded because the monitored values are closest to zero. The air velocity in the monitored
spaces is closed to 0 m/s; for these reasons, this parameter is neglected. As a result, only 6 attributes
(Tskin value, EDA, HR, To, RH and User) are considered and 9022 instances defined considering
only the rows with a noise classification value equal to 1, as reported in the categorical column
“EDA_explorer_label”. Table 8 summarizes the number of instances for each user and related data.
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Table 8. User and related variables.

User Instances Variable Min Avg Max

1a 2240

EDA [µS] 0.031 0.303 0.999
HR [bpm] 74 80 139
Tskin [◦C] 28.96 32.58 35.51
RH [%] 37.35 40.41 44.15
To [◦C] 19.1 21.88 23.97

2a 276

EDA [µS] 0.111 0.264 0.866
HR [bpm] 55 79 114
Tskin [◦C] 29.53 30.93 34.92
RH [%] 44.3 47.32 48.5
To [◦C] 21.04 22.58 23.54

2b 855

EDA [µS] 0.035 0.194 0.988
HR [bpm] 54 76 141
Tskin [◦C] 30.44 32.08 33.99
RH [%] 42.95 46.25 49.75
To [◦C] 20.78 23.03 23.53

3a 0

EDA [µS] - - -
HR [bpm] - - -
Tskin [◦C] - - -
RH [%] - - -
To [◦C] - - -

4a 453

EDA [µS] 0.03 0.137 0.418
HR [bpm] 59 72 112
Tskin [◦C] 30.12 32.39 34.25
RH [%] 32.65 35.24 38.6
To [◦C] 21.81 23.55 24.83

4b 1012

EDA [µS] 0.032 0.25 0.645
HR [bpm] 57 76 153
Tskin [◦C] 28.35 30.84 33.43
RH [%] 39.4 40.84 43.6
To [◦C] 18.8 21.74 22.98

4c 1335

EDA [µS] 0.145 0.605 0.996
HR [bpm] 56 77 136
Tskin [◦C] 30.2 32.46 33.82
RH [%] 36.2 37.07 39.9
To [◦C] 20.85 22.86 24.65

5a 2851

EDA [µS] 0.07 0.356 0.658
HR [bpm] 55 74 156
Tskin [◦C] 27.48 30.33 33.88
RH [%] 34.9 38.2 41.4
To [◦C] 22 23.82 25.06

Figure 6 reports the distribution of the input variables.
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The data related to HR, EDA and skin surface temperature (Tskin) have a pseudo-Gaussian
distribution. Figure 7 reports the interaction between the variables. As reported in the legend,
each color characterizes a specific user. Some pairs of attributes highlights a predictable relationship
in some dimensions but, generally, it is not possible to identify which algorithms would be the
best to validate and predict the users based on this dataset. For this purpose, a set of six different
linear (Logistic Regression [53] and Linear Discriminant Analysis [54]) and non-linear (K-Nearest
Neighbors [55], Classification and Regression Trees [56], Gaussian Naive Bayes [57], Support Vector
Machines [58]) algorithms are considered. The dataset is divided into two subsets, composed by 80%
and 20% of values. The former used to train the models and the latter for the validation. Table 9
reports the average accuracy (Avg.) and the standard deviation (St. dev.) of the simple linear and
non-linear algorithms based on the training dataset. Depending on the scenario reported in Table 9,
all instances of a different combination of the attributes from 0 to 4 (Tskin, EDA, HR, To and RH) are
considered as an input variable “x” and the instances of attribute 5 (User) as the target variable “y”.
The metric of ‘accuracy’ is used to evaluate the models [59] defined as the ratio of the number of
correctly predicted instances in divided by the total number of instances in the dataset. The k-fold cross
validation (k = 10) [60] is used to evaluate the performances of the different algorithms on the dataset.
Table 9 reports the Avg. and St. dev. for each algorithm evaluated 10 times (10 fold cross validation).
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Figure 7. Interaction between the variables.

Among the models, the Classification and the Regression Trees (CART) algorithm has the highest
estimation accuracy in all the considered scenarios (Table 9). CART is a non-parametric supervised
learning method that predicts the value of a target variable by learning simple decision rules inferred
from the data features [61]. Figure 8 reports the visual representation (truncated at fourth level for
a better visualization) of the trained user classifier for the scenario V (see Table 9) that granted the
highest average accuracy score, defined considering as input variables all the instances of Tskin, EDA,
To and RH columns.
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Table 9. Algorithms and related accuracy.

Scenario I Scenario II Scenario III Scenario IV Scenario V

Input Variables: Input Variables: Input Variables: Input Variables: Input Variables:

Tskin, EDA, HR,
To and RH

Tskin, EDA,
HR and To

Tskin, EDA,
HR and RH Tskin, EDA and HR Tskin, EDA,

To and RH

Algorithms Avg. St. dev. Avg. St. dev. Avg. St. dev. Avg. St. dev. Avg. St. dev.

Logistic Regression 0.81409 0.01097 0.66468 0.020608 0.658721 0.013551 0.50145 0.01582 0.821118 0.015817

Linear
Discriminant Analysis 0.834002 0.014409 0.679365 0.014593 0.712757 0.014929 0.508934 0.016283 0.837188 0.016283

K-Nearest Neighbors 0.939725 0.009485 0.807953 0.016847 0.874745 0.014654 0.628515 0.003083 0.991965 0.003083

Classification and
Regression Trees 0.991964 0.003655 0.96564 0.006938 0.966609 0.006322 0.809057 0.002703 0.993211 0.00266

Gaussian Naive Bayes 0.829985 0.012559 0.707909 0.02119 0.789527 0.011923 0.537479 0.011854 0.809613 0.011854

Support Vector Machines 0.953167 0.009965 0.803516 0.025457 0.879319 0.019446 0.62186 0.005874 0.980602 0.005874
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Figure 8. Visual representation of CART model for scenario V.

In all level it is possible to note the “gini” impurity of the node, that reaches the zero value when
all cases in the node fall into a single target category, the “sample” variable that indicates the number
of samples at each node and, finally, the “value” as list of seven attributes, reports how many of the
observation sorted into that node fall into each of seven categories (1a, 2a, 2b, 4a, 4b, 4c, 5a). In [62] the
complete tree can be displayed thus allowing to visualize the rules extracted from the training dataset.

Identified the best model on the training dataset and visualized all the rules of classification,
it is possible now to get an idea of the accuracy of the selected CART model and scenario V on the
validation set, giving an independent final check on the accuracy of the selected model and the input
variables in order to identify the users. Table 10 shows the classification report summarizing the results
as a final accuracy score of the CART model directly on the validation set.
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Table 10. Report.

User Precision Recall F1-Score Support

1a 1.00 0.99 0.99 438
2a 1.00 0.98 0.99 66
2b 0.99 1.00 1.00 184
3a - - - -
4a 1.00 1.00 1.00 100
4b 0.97 0.98 0.98 193
4c 1.00 1.00 1.00 247
5a 0.99 1.00 1.00 577

Avg/tot 0.99 0.99 0.99 1805

It shows the excellent results in term of prediction of each user considering four indicators [63]:

• Precision defined as a measure of a classifiers exactness;
• Recall considered as the completeness of the classifier;
• F1-score, a weighted average of precision and recall;
• Support, the number of occurrences of each label in y true.

The application of the ML approach has allowed to exclude the HR variable granting the highest
level of accuracy for the specific case of sedentary activity. The ML approach allows then to identify
the users and consequently their neutral TSV, considering objective and subjective variables.

4. Conclusions and Future Work

The standard approach for TC assessment is essentially based on a thermal physic model that does
not consider any other factors (behavioral, physiological, and psychological) and the complex state of
mind that could affect the TC perception. The developed framework combines the user’s feedback and
an IoT-based solution with the functionality of parametric models and ML and allows one to overcome
the limitations of the thermal energy balance equations. The comparison of all information acquired by
survey highlights the differences between the individual perception of TC, TSV and GCZa, and those
defined by the standards, PMV and GCZM, respectively. The wearable and nearable data elaborated
with the functionality of ML, allow to investigate the possibility to find some dependences among the
different variables in order to identify the different subjects. The proposed framework has allowed to
detect the indoor environmental variables close to users, in addition to the biometric parameters and
users’ feedback in order to:

• highlight differences among users and TC perception;
• define individual GCZa based on users’ feedback in order to optimize the TC control strategy;
• identify the most relevant parameters for users recognition and, consequently for their personal

TC optimal perception identification;

The method is the basis for the development of individual control strategy that combines
environmental variables and biometric with the powerfulness of ML techniques. The ML is applied to
identify the users and their TC perception thus to overcome the limit of an imbalanced dataset due
to a small number of users’ feedback in relation to the environmental and biometric data. A more
balanced dataset, obtained through a longer detection of both environmental parameters and users’
feedback, will allow to directly predict the thermal sensation of the users. That is a goal of a future
application of the framework. The adopted flexible solution can be used in different contexts (hospitals,
schools, gyms, nursing homes, etc.) considering different type of users (divided by age, gender,
presence of pathologies, etc.) as to identify possible useful pattern for the optimal management of
personal thermal comfort. It can be upgraded with some other features including a more integrated
approach that can consider also a chat bot following the user in the initial phase and in the activity of
feedback recognition.



Sensors 2018, 18, 1602 14 of 18

In the current case study, the influence of air velocity was neglected. The air velocity could
become an important variable for thermal comfort assessment that cannot be excluded especially in
indoor space with a forced air cooling/heating system [64,65]. The variability of the environmental
parameters in the space deserves interest as they can be cause of thermal discomfort for the users.
The current framework can face this issue by exploiting the flexibility and the reliability of the low cost
devices integrated in a Wireless Sensor Network. Finally, the interaction between the environmental
parameters, such as CO2 concentration and illuminance level, and the users’ thermal sensation will be
investigated by exploiting the potential provided by ML techniques, thus allowing to include other
aspects related to IEQ: Indoor Air Quality (IAQ), Indoor Lighting Quality (ILQ) [66–68], Acoustic
comfort [69–71] and their interaction with the energy performance of buildings [72–75].
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Nomenclature

AM Adaptive method
CART Classification and Regression Trees
EDA Electrodermal Activity
GCZa adapted Graphic Comfort Zone
GCZM Graphic Comfort Zone Method
HR Heart Rate [bpm]
IAQ Indoor Air Quality
IEQ Indoor Environmental Quality
ILQ Indoor Lighting Quality
ML Machine Learning
PMV Predicted Mean Vote [-]
PPD Predicted Percentage of Dissatisfied [%]
RH Relative humidity [%]
Tair Air Temperature [◦C]
TC Thermal Comfort
To Operative Temperature [◦C]
Trad Radiant Temperature [◦C]
Tskin Skin surface Temperature [◦C]
TSV Thermal Sensation Vote [-]
Vair Air Velocity [m/s]
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