Atmospheric Dispersion Modelling at the London VAAC: A Review of Developments since the 2010 Eyjafjallajökull Volcano Ash Cloud
Abstract
:1. Introduction
2. Dispersion Modelling of Volcanic Ash Clouds
3. The London VAAC Response to the Ash Clouds from Eyjafjallajökull in 2010 and Grímsvötn in 2011
3.1. NWP Met Data
3.2. Model Initialization
3.2.1. Plume Height and Emission Rates
3.2.2. Physical Characteristics of Volcanic Ash
3.3. Product Generation
3.4. Lessons Learned
4. Scientific Development of the Modelling System Used by the London VAAC
4.1. NWP Met Data
4.2. NAME Development
4.3. Improvements to Model Initialization
4.3.1. Plume Height and Emission Rate
4.3.2. Particle Characteristics
4.4. Scenarios
4.5. Product Generation
5. Discussion
5.1. Atmospheric Processes
5.2. Modelling Volcanic Ash in the Atmosphere
5.3. Integrating Observations
5.4. Computer Resources
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Casadevall, T.J.; Delos Reyes, P.; Schneider, D. The 1991 Pinatubo eruptions and their effects on aircraft operations. In Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines; Newhall, C., Punongbayan, R., Eds.; University of Washington Press: Seattle, WC, USA, 1996; pp. 625–636. [Google Scholar]
- Clarkson, R.; Majewicz, E.; Mack, P. A re-evaluation of the 2010 quantitative understanding of the effects volcanic ash has on gas turbine engines. J. Aerosp. Eng. 2016, 230, 2274–2291. [Google Scholar] [CrossRef]
- Clarkson, R.; Simpson, H. Maximising Airspace Use During Volcanic Eruptions: Matching Engine Durability against Ash Cloud Occurrence. In Proceedings of the NATO STO AVT-272 Specialists Meeting on: Impact of Volcanic Ash Clouds on Military Operations, Vilnius, Lithuania, 15–17 May 2017. [Google Scholar]
- ICAO. Flight Safety and Volcanic Ash Risk Management of Flight Operations with Known or Forecast Volcanic Ash Contamination, 1st ed.; Doc 9974ANB/487; International Civil Aviation Organization: Montreal, QC, Canada, 2012. [Google Scholar]
- Witham, C.; Hort, M.; Potts, R.; Servranckx, R.; Husson, P.; Bonnardot, F. Comparison of VAAC atmospheric dispersion models using the 1 November 2004 Grimsvötn eruption. Meteorol. Appl. 2007, 14, 27–38. [Google Scholar] [CrossRef]
- Webley, P.; Stunder, B.; Dean, K. Preliminary sensitivity study of eruption source parameters for operational volcanic ash cloud transport and dispersion models—A case study of the August 1992 eruption of the Crater Peak vent, Mount Spurr, Alaska. J. Volcanol. Geotherm. Res. 2009, 186, 108–119. [Google Scholar] [CrossRef]
- Crawford, A.; Stunder, B.; Ngan, F.; Pavalonis, M. Initializing HYSPLIT with satellite observations of volcanic ash: A case study of the 2008 Kasatochi eruption. J. Geophys. Res. Atmos. 2016, 121, 10,786–10,803. [Google Scholar] [CrossRef]
- Dare, R.; Smith, D.; Naughton, M. Ensemble Prediction of the Dispersion of Volcanic Ash from the 13 February 2014 Eruption of Kelut, Indonesia. J. Appl. Meteorol. Climatol. 2016, 55. [Google Scholar] [CrossRef]
- Chai, T.; Crawford, A.; Stunder, B.; Pavalonis, M.; Draxler, R.; Stein, A. Improving volcanic ash predictions with the HYSPLIT dispersion model by assimilating MODIS satellite retrievals. Atmos. Chem. Phys. 2017, 17, 2865–2879. [Google Scholar] [CrossRef] [Green Version]
- Zidikheri, M.; Lucas, C.; Potts, R. Toward quantitative forecasts of volcanic ash dispersal: Using satellite retrievals for optimal estimation of source terms. J. Geophys. Res. Atmos. 2017, 122. [Google Scholar] [CrossRef]
- Osores, S.; Ruiz, J.; Folch, A.; Collini, E. Volcanic ash forecast using ensemble-based data assimilation: An ensemble transform Kalman filter coupled with the FALL3D-7.2 model (ETKF–FALL3D version 1.0). Geosci. Model Dev. 2020, 13, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.; Thomson, D.; Hort, M.; Devenish, B. The UK Met Office’s next-generation atmospheric dispersion model, NAME III. In Air Pollution Modelling and its Application; Borrego, C., Norman, A.L., Eds.; Springer: Berlin, Germany, 2007; pp. 580–589. [Google Scholar]
- Gudmundsson, M.; Thordarson, T.; Hoskuldsson, A.; Larsen, G.; Bjornsson, H.; Prata, F.; Oddsson, B.; Magnusson, E.; Hognadottir, T.; Petersen, G.; et al. Ash generation and distribution from the April–May 2010 eruption of Eyjafjallajökull, Iceland. Sci. Rep. 2012, 2, 572. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.J.; Gurioli, L.; Hughes, E.E.; Lagreulet, S. Impact of the Eyjafjallajökull ash cloud: A newspaper perspective. J. Geophys. Res. 2012, 117, B00C08. [Google Scholar] [CrossRef]
- ICAO. Manual on Volcanic Ash, Radioactive Material and Toxic Chemical Clouds, 2nd ed.; International Civil Aviation Organization: Montreal, QC, Canada, 2007. [Google Scholar]
- ICAO. Volcanic Ash Contingency Plan: European and North Atlantic Regions; EUR doc 019, NAT doc 006; Part II; International Civil Aviation Authority: Montreal, QC, Canada, 2016. [Google Scholar]
- Walters, D.; Baran, A.; Boutle, I.; Brooks, M.; Earnshaw, P.; Edwards, J.; Furtado, K.; Hill, P.; Lock, A.; Manners, J.; et al. The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev. 2019, 12, 1909–1963. [Google Scholar] [CrossRef] [Green Version]
- Webster, H.; Thomson, D. A Particle Size Dependent Wet Deposition Scheme for NAME; Forecasting Research Technical Report; Met Office: Exeter, UK, 2017; Volume 624. [Google Scholar]
- Webster, H.; Thomson, D. Dry deposition modelling in a Lagrangian dispersion model. IJEP 2011. [Google Scholar] [CrossRef] [Green Version]
- Webster, H.; Thomson, D.; Johnson, B.; Heard, I.; Turnbull, K.; Marenco, F.; Kristiansen, N.; Dorsey, J.; Minikin, A.; Weinzierl, B.; et al. Operational prediction of ash concentrations in the distal volcanic cloud from the 2010 Eyjafjallajökull eruption. J. Geophys. Res. 2012, 117, D00U08. [Google Scholar] [CrossRef] [Green Version]
- Rawlins, F.; Ballard, S.; Bovis, K.; Clayton, A.; Li, D.; Inverarity, G.; Lorenc, A.C.; Payne, T. The Met Office global four-dimensional variational data assimilation scheme. Q. J. R. Meteorol. Soc. 2007, 133, 347–362. [Google Scholar] [CrossRef]
- Witham, C. Assessment of the impact of radar height data on model forecasts for Grímsvötn 2011. In Statistical Assessment of Dispersion Model Sensitivity; Deliverable Report D8.5 of the EU FUTUREVOLC Project; Beckett, F., Witham, C., Devenish, B., Eds.; 2015; Available online: http://futurevolc.hi.is/sites/futurevolc.hi.is/files/Pdf/Deliverables/fv_d8_5_to_submit_low.pdf (accessed on 1 January 2020).
- Petersen, G.; Bjornsson, H.; Arason, P.; von Löwis, S. Two weather radar time series of the altitude of the volcanic plume during the May 2011 eruption of Grímsvötn, Iceland. Earth Syst. Sci. Data 2012, 4, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Cooke, M.; Francis, P.N.; Millington, S.; Saunders, R.C.W. Detection of the Grimsvotn 2011 volcanic eruption plumes using infrared satellite measurements. Atmos. Sci. Lett. 2014. [Google Scholar] [CrossRef]
- Prata, F.; Woodhouse, M.; Huppert, H.E.; Prata, A.; Thordarson, T.; Carn, S. Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: Inferences from the May 2011 Grímsvötn eruption. Atmos. Chem. Phys. 2017, 17, 10709–10732. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, J.; Loughlin, S.; Font, A.; Fuller, G.; MacLeod, A.; Oliver, I.; Jackson, B.; Horwell, C.; Thordarson, T.; Dawson, I. UK monitoring and deposition of tephra from the May 2011 eruption of Grímsvötn, Iceland. J. Appl. Volcanol. 2013, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Moxnes, E.D.; Kristiansen, N.; Stohl, A.; Clarisse, L.; Durant, A.; Weber, K.; Vogel, A. Separation of ash and sulfur dioxide during the 2011 Grímsvötn eruption. J. Geophys. Res. 2014, 119, 7477–7501. [Google Scholar] [CrossRef] [Green Version]
- Morton, B.; Taylor, G.I.; Turner, J. Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. 1956, 234, 1–23. [Google Scholar]
- Heffter, J.; Stunder, B. Volcanic Ash Forecast Transport and Dispersion (VAFTAD) model. Weather Forecast 1993, 8, 534–541. [Google Scholar] [CrossRef] [Green Version]
- Leadbetter, S.; Hort, M. Volcanic ash hazard climatology for an eruption of Hekla Volcano, Iceland. J. Volcanol. Geotherm. Res. 2011, 199, 230–241. [Google Scholar] [CrossRef]
- Mastin, L.; Guffanti, M.; Guffanti, M.; Servranckx, R.; Webley, P.; Barsotti, S.; Dean, K.; Durant, A.; Ewert, J.; Neri, A.; et al. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J. Volcanol. Geotherm. Res. 2009, 186, 10–21. [Google Scholar] [CrossRef]
- Woodhouse, M.; Hogg, A.; Phillips, J.; Sparks, R. Interaction between volcanic plumes and wind during the 2010 Eyjafjallajokull eruption, Iceland. J. Geophys. Res. Solid Earth 2013, 118. [Google Scholar] [CrossRef] [Green Version]
- Tupper, A.; Textor, C.; Herzog, M.; Graf, H.; Richards, M. Tall clouds from small eruptions: The sensitivity of eruption height and fine ash content to tropospheric instability. Nat. Hazards 2009, 51, 375–401. [Google Scholar] [CrossRef]
- Rose, W.; Durant, A. Fine ash content of explosive eruptions. J. Volcanol. Geotherm. Res. 2009, 186, 32–39. [Google Scholar] [CrossRef]
- Carey, S.; Sigurdsson, H. Influence of particle aggregation on deposition of distal tephra from the May 18, 1980 eruptions of Mount St Helens Volcano. J. Geophys. Res. 1982, 87, 7061–7072. [Google Scholar] [CrossRef]
- Manzella, I.; Bonadonna, C.; Phillips, J.; Monnard, H. The role of gravitational instabilities in deposition of volcanic ash. Geology 2015, 43, 211–214. [Google Scholar] [CrossRef] [Green Version]
- Del Bello, E.; Taddeucci, J.; de’ Michieli Vitturi, M.; Scarlato, P.; Andronico, D.; Scollo, S.; Kueppers, U.; Ricci, T. Effect of particle volume fraction on the settling velocity of volcanic ash particles: Insights from joint experimental and numerical simulations. Sci. Rep. 2017, 7, 39620. [Google Scholar] [CrossRef] [Green Version]
- Rose, W.; Bluth, G.; Ernst, G. Integrating retrievals of volcanic cloud characteristics from satellite remote sensors: A summary. Phil. Trans. Soc. Lond. A 2000, 358, 1585–1606. [Google Scholar] [CrossRef] [Green Version]
- Dacre, H.; Grant, A.; Hogan, R.; Belcher, S.; Thomson, D.; Devenish, B.; Marenco, F.; Hort, M.; Haywood, J.; Ansmann, A.; et al. Evaluating the structure and magnitude of the ash plume during the initial phase of the 2010 Eyjafjallajökull eruption using lidar observations and NAME simulations. J. Geophys. Res. 2011, 116, D00U03. [Google Scholar] [CrossRef]
- Devenish, B.; Francis, P.; Johnson, B.; Sparks, R.; Thomson, D. Sensitivity analysis of dispersion modelling of volcanic ash from Eyjafjallajökull in May 2010. J. Geophys. Res. 2012, 117, D00U21. [Google Scholar]
- Devenish, B.; Thomson, D.; Marenco, F.; Leadbetter, S.; Ricketts, H.; Dacre, H. A study of the arrival over the United Kingdom in April 2010 of the Eyjafjallajökull ash cloud using the ground-based lidar and numerical solutions. Atmos. Environ. 2012, 48, 152–164. [Google Scholar] [CrossRef]
- Rust, A.; Cashman, K. Permeability controls on expansion and size distributions of pyroclasts. J. Geophys. Res. 2011, 116, B11202. [Google Scholar] [CrossRef] [Green Version]
- Cashman, K.; Rust, A. Volcanic ash: Generation and spatial variations. In Volcanic Ash; Mackie, S., Cashman, K., Rickets, H., Rust, A., Watson, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 5–22. [Google Scholar]
- White, F. Viscous Fluid Flow; McGraw-Hill: New York, NY, USA, 1974. [Google Scholar]
- Hobbs, P.; Radke, L.; Lyons, J.; Ferek, R.; Coffman, D. Airborne measurements of particle and gas emissions from the 1990 volcanic eruptions of Mount Redoubt. J. Geophys. Res. 1991, 96, 18735–18752. [Google Scholar] [CrossRef] [Green Version]
- Maryon, R.; Ryall, D.; Malcolm, A. The NAME 4 Dispersion Model: Science Documentation. In Turbulence and Diffusion Note; Met Office: Exeter, UK, 1999; Volume 262. [Google Scholar]
- Bonadonna, C.; Genco, R.; Gouhier, M.; Pistolesi, M.; Cioni, R.; Alfano, F.; Hoskuldsson, A.; Ripepe, M. Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations. J. Geophys. Res. 2011, 116, B12202. [Google Scholar] [CrossRef]
- Stevenson, J.; Loughlin, S.; Rae, C.; Thordarson, T.; Milodowski, A.; Gilbert, J.; Harangi, S.; Lukács, R.; Hojgaard, B.; Árting, U.; et al. Distal deposition of tephra from the Eyjafjallajökull 2010 summit eruption. J. Geophys. Res. 2012, 117, B00C10. [Google Scholar] [CrossRef] [Green Version]
- Watson, E.J.; Swindles, G.T.; Stevenson, J.; Savov, I.; Lawson, I. The transport of Icelandic volcanic ash: Insights from northern European cryptotephra records. J. Geophys. Res. Solid Earth 2016, 121. [Google Scholar] [CrossRef] [Green Version]
- Saxby, J.; Rust, A.; Cashman, K.; Beckett, F. The importance of grain size and shape in controlling the dispersion of the Vedde cryptotephra. J. Quaternary Sci. 2019, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Beckett, F.M.; Witham, C.; Hort, M.; Stevenson, J.; Bonadonna, C.; Millington, S. Sensitivity of dispersion model forecasts of volcanic ash clouds to the physical characteristics of the particles. J. Geophys. Res. Atmos. 2015, 120, 11636–11652. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, J.; Millington, S.; Beckett, F.M.; Swindles, G.; Thordarson, T. Understanding the discrepancy between tephrochronology and satellite infrared measurements of volcanic ash. Atmos. Meas. Tech. 2015, 8, 2069–2091. [Google Scholar] [CrossRef] [Green Version]
- Saxby, J.; Beckett, F.; Cashman, K.; Rust, A.; Tennant, E. The impact of particle shape on fall velocity: Implications for volcanic ash dispersion modelling. J. Volcanol. Geotherm. Res. 2018, 362, 32–48. [Google Scholar] [CrossRef]
- Ansmann, A.; Tesche, M.; Siefer, P.; Groß, S.; Freudenthaler, V.; Apituley, A.; Wilson, K.; Serikov, I.; Linné, H.; Heinold, B.; et al. Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010. J. Geophys. Res. 2011, 116, D00U02. [Google Scholar] [CrossRef]
- Marenco, F.; Johnson, B.; Turnbull, K.; Newman, S.; Haywood, J.; Webster, H.; Ricketts, H. Airborne lidar observations of the 2010 Eyjafjallajökull volcanic ash plume. J. Geophys. Res. 2011, 116, D00U05. [Google Scholar] [CrossRef]
- Johnson, B.; Turnbull, K.; Brown, P.; Burgess, R.; Dorsey, J.; Baran, A.; Webster, H.; Haywood, J.; Cotton, R.; Ulanowski, Z.; et al. In situ observations of volcanic ash clouds from the FAAM aircraft during the eruption of Eyjafjallajökull in 2010. J. Geophys. Res. 2012, 117, D00U24. [Google Scholar] [CrossRef] [Green Version]
- Turnbull, K.; Johnson, B.; Marenco, F.; Haywood, J.; Minikin, A.; Weinzierl, B.; Schlager, H.; Schumann, U.; Leadbetter, S.; Woolley, A. A case study of obervations of volcanic ash from the Eyjafjallajökull eruption: 1. In situ airborne observations. J. Geophys. Res. 2012, 117, D00U12. [Google Scholar] [CrossRef] [Green Version]
- Bonadonna, C.; Folch, A.; Loughlin, S.; Puempel, H. Future developments in modelling and monitoring of volcanic ash clouds: Outcomes from the first IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation. Bull. Volcanol. 2012, 74, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525. [Google Scholar] [CrossRef]
- Bush, M.; Bell, S.; Christidis, N.; Renshaw, R.; MacPherson, B.; Wilson, C. Development of the North Atlantic European Model (NAE), into an operational model. Forecast. Res. Tech. Rep. 2006, 470, 1–53. [Google Scholar]
- Beckett, F.M.; Witham, C.; Devenish, B. Statistical Assessment of Dispersion Model Sensitivity; FUTUREVOLC Deliverable Report D8.5; 2015; Available online: http://futurevolc.hi.is/sites/futurevolc.hi.is/files/Pdf/Deliverables/fv_d8_5_to_submit_low.pdf (accessed on 1 January 2020).
- Mittermaier, M. A strategy for verifying near-convection-resolving model forecasts at observing sites. Weather Forecast. 2014, 29, 185–204. [Google Scholar] [CrossRef]
- Wood, N.; Staniforth, A.; White, A.; Allen, T.; Diamantakis, M.; Gross, M.; Melvin, T.; Smith, C.; Vosper, S.; Zerroukat, M.; et al. An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Q. J. R. Meteorol. Soc. 2014, 140, 1505–1520. [Google Scholar] [CrossRef]
- Walters, D.; Boutle, I.; Brooks, M.; Melvin, T.; Stratton, R.; Vosper, S.; Wells, H.; Williams, K.; Wood, N.; Allen, T. The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev. 2017, 10, 1487–1520. [Google Scholar] [CrossRef] [Green Version]
- Clayton, A.; Lorenc, A.; Barker, D. Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Q. J. R. Meteorol. Soc. 2013, 139, 1445–1461. [Google Scholar] [CrossRef]
- Webster, H.; Whitehead, T.; Thomson, D. Parameterizing unresolved mesoscale motions in atmospheric dispersion models. J. Appl. Meteor. Climatol. 2018, 87, 645–657. [Google Scholar] [CrossRef]
- Meneguz, E.; Thomson, D. Towards a new scheme for parametrisation of deep convection in NAME III. Int. J. Environ. Pollut. 2014, 54, 128–136. [Google Scholar] [CrossRef]
- Saxby, J.; Rust, A.; Beckett, F.; Cashman, K.; Rodger, H. Estimating the 3D shape of volcanic ash to better understand sedimentation processes and improve atmospheric dispersion modelling. Earth Planet. Sci. Lett. 2020, 534, 116075. [Google Scholar] [CrossRef]
- Ganser, G. A rational approach to drag prediction for spherical and nonspherical particles. Powder Technol. 1993, 77, 143–152. [Google Scholar] [CrossRef]
- Stratford, K.; Devenish, B.; Evans, B.; Glover, M.; Jones, A.; Thomson, D. Distributed Memory Parallelism in NAME. EPCC Report. 2018. Available online: www.archer.ac.uk/community/eCSE/eCSE09-10/report.pdf (accessed on 1 January 2020).
- Scollo, S.; Folch, A.; Costa, A. A parametric and comparative study of different tephra fall out models. J. Volcanol. Geotherm. Res. 2008, 176, 199–211. [Google Scholar] [CrossRef]
- Harvey, N.; Huntley, N.; Dacre, H.; Goldstein, M.; Thomson, D.; Webster, H. Multi-level emulation of a volcanic ash transport and dispersion model to quantify sensitivity to uncertain parameters. Nat. Hazards Earth Syst. Sci. 2018, 18, 41–63. [Google Scholar] [CrossRef] [Green Version]
- Dürig, T.; Gudmundsson, M.; Karmann, S.; Zimanowski, B.; Dellino, P.; Rietze, M.; Büttner, R. Mass eruption rates in pulsating eruptions estimated from video analysis of the gas thrust-buoyancy transition—A case study of the 2010 eruption of Eyjafjallajökull, Iceland. Earth Planets Space 2015, 67, 180. [Google Scholar] [CrossRef] [Green Version]
- Ripepe, M.; Bonadonna, C.; Folch, A.; Delle Donne, D.; Lacanna, G.; Marchetti, E.; Höskuldsson, A. Ash-plume dynamics and eruption source parameters by infrasound and thermal imagery: The 2010 Eyjafjallajökull eruption. Earth Planet. Sci. Lett. 2013, 366, 112–121. [Google Scholar]
- Valade, S.; Harris, A.; Cerminara, M. Plume ascent tracker: Interactive matlab software for analysis of ascending plumes in image data. Comput. Geosci. 2014, 66, 132–144. [Google Scholar]
- Freret-Lorgeril, V.; Donnadieu, F.; Scollo, S.; Provost, A.; Fréville, P.; Guéhenneux, Y.; Hervier, C.; Prestifilippo, M.; Coltelli, M. Mass Eruption Rates of Tephra Plumes During the 2011–2015 Lava Fountain Paroxysms at Mt. Etna From Doppler Radar Retrievals. Front. Earth Sci. 2018, 6, 73. [Google Scholar] [CrossRef]
- Pouget, S.; Bursik, M.; Johnson, C.; Hogg, A.; Phillips, J.; Sparks, R. Interpretation of umbrella cloud growth and morphology: Implications for flow regimes of short-lived and long-lived eruptions. Bull. Volcanol. 2016, 78, 1. [Google Scholar]
- Van Eaton, A.R.; Amigo, A.; Bertin, D.; Mastin, L.; Giacosa, R.; González, J.; Valderrama, O.; Fontijn, K.; Behnke, S. Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco volcano, Chile. Geophys. Res. Lett. 2016, 43. [Google Scholar] [CrossRef] [Green Version]
- Hargie, K.; Van Eaton, A.; Mastin, L.; Holzworth, R.; Ewert, J.; Pavolonis, M. Globally detected volcanic lightning and umbrella dynamics during the 2014 eruption of Kelud, Indonesia. J. Volcanol. Geotherm. Res. 2019, 382, 81–91. [Google Scholar]
- Dürig, T.; Gudmundsson, M.; Dioguardi, F.; Woodhouse, M.; Björnsson, H.; Barsotti, S.; Witt, T.; Walter, T. REFIR- A multi-parameter system for near real-time estimates of plume-height and mass eruption rate during explosive eruptions. J. Volcanol. Geotherm. Res. 2018, 360, 61–83. [Google Scholar]
- Dioguardi, F.; Beckett, F.; Dürig, T.; Stevenson, J. The impact of eruption source parameter uncertainties on ash dispersion forecasts during explosive volcanic eruptions. J. Geophys. Res. (Submitted).
- Costa, A.; Suzuki, Y.J.; Cerminara, M.; Devenish, B.J.; Esposti Ongaro, T.; Herzog, M.; Van Eaton, A.R.; Denby, L.C.; Bursik, M.; de Michieli, M.; et al. Results of the eruptive column model inter-comparison study. J. Volcanol. Geotherm. Res. 2016, 326, 2–25. [Google Scholar]
- Devenish, B. Using simple plume models to refine the source mass flux of volcanic eruptions according to atmospheric conditions. J. Volcanol. Geotherm. Res. 2013, 256, 118–127. [Google Scholar]
- Woodhouse, M.; Hogg, A.; Phillips, J. A global sensitivity analysis of the PlumeRise model of volcanic plumes. J. Volcanol. Geotherm. Res. 2016, 326, 54–76. [Google Scholar] [CrossRef] [Green Version]
- Devenish, B. Estimating the total mass emitted by the eruption of Eyjafjallajökull in 2010 using plume-rise models. J. Volcanol. Geotherm. Res. 2016, 326, 114–119. [Google Scholar] [CrossRef]
- Devenish, B.; Rooney, G.; Thomson, D.J. Large-eddy simulation of a buoyant plume in uniform and stably stratified environments. JFM 2010, 652, 75–103. [Google Scholar] [CrossRef]
- Devenish, B.; Rooney, G.; Webster, H.; Thomson, D.J. The entrainment rate for buoyant plumes in a crossflow. Boundary-Layer Met. 2010, 134, 411–439. [Google Scholar] [CrossRef]
- Stohl, A.; Prata, A.; Eckhardt, S.; Clarisse, L.; Durant, A.; Henne, S.; Kristiansen, N.; Minikin, A.; Schumann, U.; Seibert, P.; et al. Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: The 2010 Eyjafjallajokull eruption. Atmos. Chem. Phys. 2011, 11, 4333–4351. [Google Scholar] [CrossRef] [Green Version]
- Kristiansen, N.; Stohl, A.; Prata, A.; Bukowiecki, N.; Dacre, H.; Eckhardt, S.; Henne, S.; Hort, M.; Johnson, B.; Marenco, F.; et al. Performance assessment of a volcanic ash transport model mini-ensemble used for inverse modeling of the 2010 Eyjafjallajökull eruption. J. Geophys. Res. 2012, 117, D00U11. [Google Scholar] [CrossRef] [Green Version]
- Denlinger, R.; Pavolonis, M.; Sieglaff, J. A robust method to forecast volcanic ash clouds. J. Geophys. Res. 2012, 117, D13208. [Google Scholar] [CrossRef]
- Pelley, R.; Cooke, M.; Manning, A.; Thomson, D.; Witham, C.; Hort, M. Initial Implementation of an Inversion Technique for Estimating Volcanic Ash Source Parameters in Near Real time using Satellite Retrievals; Forecasting Research Technical Report; Met Office: Exeter, UK, 2015; Volume 604. [Google Scholar]
- Pelley, R.; Thomson, D.; Webster, H.; Cooke, M.; Manning, A.; Witham, C.; Hort, M. An inversion technique for estimating volcanic ash source parameters in near real time using satellite retrievals. J. Geophys. Res. (Submitted).
- Osman, S.; Beckett, F.; Rust, A.; Snee, E. Understanding grain size distributions and their impact on ash dispersal modelling. Atmosphere. (This Issue).
- Gudnason, J.; Thordarson, T.; Houghton, B.; Larsen, G. The opening subplinian phase of the Hekla 1991 eruption: Properties of the tephra fall deposit. Bull. Volcanol. 2018, 350, 33–46. [Google Scholar]
- WMO. ; IUGG. Seventh WMO VAAC Best Practice Workshop (VAAC BP/7) and Ninth WMO/IUGG Volcanic Ash Scientific Advisory Group Meeting (VASAG/9) Report; World Meterological Organization International Union of Geodesy and Geophysics: Washington DC, USA, 2019. [Google Scholar]
- Witham, C.; Barsotti, S.; Dumont, S.; Oddsson, B.; Sigmundsson, F. Practising an explosive eruption in Iceland: Outcomes from a European exercise. J. Appl. Volcanol. 2020, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bowman, K.; Lin, J.; Stohl, A.; Draxler, R.; Konopka, P.; Andrews, A.; Brunner, D. Input data requirements for Lagrangian trajectory models. BAMS 2013, 1050–1058. [Google Scholar] [CrossRef]
- Dacre, H.; Grant, A.; Harvey, N.; Thomson, D.; Webster, H.; Marenco, F. Volcanic ash layer depth: Processes and mechanisms. Geophys. Res. Lett. 2015, 42, 637–645. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, E. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Slingo, J.; Palmer, T. Uncertainty in weather and climate prediction. Phil. Trans. R. Soc. A. 2011, 369, 4751–4767. [Google Scholar] [CrossRef] [PubMed]
- Prata, A.; Dacre, H.; Irvine, E.; Matthieu, E.; Shine, K.; Clarkson, R. Calculating and communicating ensemble-based volcanic ash dosage and concentration risk for aviation. Meteorol. Appl. 2018, 26, 253–266. [Google Scholar] [CrossRef] [Green Version]
- Zidikheri, M.; Lucas, C.; Potts, R. Quantitative verification and calibration of volcanic ash ensemble forecasts using satellite data. J. Geophys. Res. Atmos. 2018, 123. [Google Scholar] [CrossRef]
- Bowler, N.; Arribas, A.; Mylne, K.; Robertson, K.; Beare, S. The MOGREPS short-range ensemble prediction system. Q. J. Roy. Meteorol. Soc. 2008, 134, 703–722. [Google Scholar] [CrossRef]
- Bowler, N.; Arribas, A.; Beare, S.; Mylne, K. The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system. Q. J. Roy. Meteorol. Soc. 2009, 135, 767–776. [Google Scholar] [CrossRef]
- Hirtl, M.; Stuefer, M.; Arnald, D.; Grell, G.; Maurer, C.; Natali, S.; Scherllin-Pirscher, B.; Webley, P. The effects of simulating volcanic aerosol radiative feedback with WRF-Chem during the Eyjafjallajökull eruption, April and May 2010. Atmos. Environ. 2019, 198, 194–206. [Google Scholar] [CrossRef]
- Marti, A.; Folch, A. Volcanic ash modelling with NMMB-MONARCH-ASH model: Quantification of offline modeling errors. Atmos. Chem. Phys. 2018, 18, 4019–4038. [Google Scholar] [CrossRef] [Green Version]
- Webster, H.; Devenish, B.; Mastin, L.; Thosom, D.; Van Eaton, A. Operational Modelling of Umbrella Cloud Growth in a Lagrangian Volcanic Ash Transport and Dispersion Model. Atmosphere 2020, 11, 200. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.; Folch, A.; Macedonio, G. Density-driven transport in the umbrella region of volcanic clouds: Implications for tephra dispersion models. Geophys. Res. Lett. 2013, 40, 4823–4827. [Google Scholar] [CrossRef]
- Mastin, L.; Van Eaton, A.; Lowenstern, J. Modelling ash fall distribution from a Yellowstone supereruption. Geochem. Geophys. Geosyst. 2014, 15, 3459–3475. [Google Scholar] [CrossRef]
- Aubry, T.; Jellinek, A.M. New insights on entrainment and condensation in volcanic plumes: Constraints from independent observations of explosive eruptions and implications for assessing their impacts. Earth Planet. Sci. Lett. 2017, 490, 132–142. [Google Scholar] [CrossRef]
- Aubry, T.; Carazzo, G.; Jellinek, A.M. Turbulent entrainment into volcanic plumes: New constraints from laboratory experiments on buoyant jets rising in a stratified crossflow. Geophys. Res. Lett. 2017, 44. [Google Scholar] [CrossRef]
- Aubry, T.; Jellinek, A.M.; Carazzo, G.; Gallo, R.; Hatcher, K.; Dunning, J. A new analytical scaling for turbulent wind-bent plumes: Comparison of scaling laws with analog experiments and a new database of eruptive conditions for predicting the height of volcanic plumes. J. Volcanol. Geotherm. Res. 2017, 343, 233–251. [Google Scholar] [CrossRef]
- Cerminara, M.; Esposti Ongaro, T.; Berselli, L. ASHEE-1.0: A compressible, equilibrium–Eulerian model for volcanic ash plumes. Geosci. Model Dev. 2016, 9, 697–730. [Google Scholar] [CrossRef] [Green Version]
- Cerminara, M.; Esposti Ongaro, T.; Neri, A. Large Eddy Simulation of gas–particle kinematic decoupling and turbulent entrainment in volcanic plumes. J. Volcanol. Geotherm. Res. 2016, 326, 143–171. [Google Scholar] [CrossRef]
- Arason, P.; Petersen, G.; Bjornsson, H. Observations of the altitude of the volcanic plume during the eruption of Eyjafjallajökull, April–May 2010. Earth Syst. Sci. Data Discuss. 2011, 4, 1–25. [Google Scholar] [CrossRef]
- Degruyter, W.; Bonadonna, C. Improving on mass flow rate estimates of volcanic eruptions. Geophys. Res. Lett. 2012, 39, L16308. [Google Scholar] [CrossRef] [Green Version]
- Gouhier, M.; Eychenne, J.; Azzaoui, N.; Guillin, A.; Deslandes, M.; Poret, M.; Costa, A.; Husson, P. Low efficiency of large volcanic eruptions in transporting very fine ash into the atmosphere. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.; Rust, A. Far-travelled ash in past and future eruptions: Combining tephrochronology with volcanic studies. J. Quaternary Sci. 2019, 1–12. [Google Scholar] [CrossRef]
- Bonadonna, C.; Houghton, B. Total grain size distribution and volume of tephra fall deposits. Bull. Volc. 2005, 67, 441–456. [Google Scholar] [CrossRef]
- Bagheri, G.; Bonadonna, C. Aerodynamics of volcanic particles: Characterization of size, shape, and settling velocity. In Volcanic Ash; Mackie, S., Cashman, K., Rickets, H., Rust, A., Watson, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 39–52. [Google Scholar]
- Pioli, L.; Bonadonna, C.; Pistolesi, M. Reliability of Total Grain-Size Distribution of Tephra Deposits. Sci. Rep. 2019, 9, 10006. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.; Bonadonna, C.; Durant, A. A review of volcanic ash aggregation. Phys. Chem. Earth 2012, 45–46, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Sorem, R. Volcanic ash clusters: Tephra rafts and scavengers. J. Volcanol. Geotherm. Res. 1982, 13, 63–71. [Google Scholar] [CrossRef]
- Bagheri, G.; Rossi, E.; Biass, S.; Bonadonna, C. Timing and nature of volcanic particle clusters based on field and numerical investigations. J. Volcanol. Geotherm. Res. 2016, 327, 520–530. [Google Scholar] [CrossRef] [Green Version]
- Rossi, E.; Bagheri, G.; Beckett, F.; Bonadonna, C. The fate of volcanic ash aggregates: Premature or delayed sedimentation? (Submitted).
- Lane, S.; Gilbert, J.; Hilton, M. The aerodynamic behaviour of volcanic aggregates. Bull. Volcanol. 1993, 55, 481–488. [Google Scholar] [CrossRef]
- Rose, W.; Durant, A. Fate of volcanic ash: Aggregation and fallout. Geology 2011, 39, 895–896. [Google Scholar] [CrossRef]
- Costa, A.; Folch, A.; Macedonio, G. A model for wet aggregation of ash particles in volcanic plumes and clouds: 1. Theoretical formulation. J. Geophys. Res. 2010, 115, B09201. [Google Scholar] [CrossRef]
- Folch, A.; Costa, A.; Durant, A.; Macedonio, G. A model for wet aggregation of ash particles in volcanic plumes and clouds: 2. Model application. J. Geophys. Res. 2010, 115, B09202. [Google Scholar] [CrossRef]
- Rossi, E. A new perspective on volcanic particle sedimentation and aggregation. Ph.D. Thesis, University of Geneva, Geneva, Switzerland, 2018. [Google Scholar]
- Folch, A.; Costa, A.; Macedonio, G. FPLUME-1.0: An integral volcanic plume model accounting for ash aggregation. Geosci. Model Dev. 2016, 9, 431–450. [Google Scholar] [CrossRef] [Green Version]
- Madankan, R.; Pouget, S.; Singla, P.; Bursik, M.; Dehn, J.; Jones, M.; Patra, A.; Pavolonis, M.; Pitman, E.; Singh, T.; et al. Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion. J. Comput. Phys. 2014, 271, 39–59. [Google Scholar] [CrossRef]
- Stefanescu, E.; Patra, A.; Bursik, M.; Madankan, R.; Pouget, S.; Jones, M.; Singla, P.; Singh, T.; Pitman, E.; Pavolonis, M.; et al. Temporal, probabilistic mapping of ash clouds using wind field stochastic variability and uncertain eruption source parameters: Example of the 14 April 2010 Eyjafjallajökull eruption. Adv. Model. Earth Syst. 2014, 06. [Google Scholar] [CrossRef] [Green Version]
- Schmehl, K.; Haupt, S.; Pavalonis, M. A Genetic Algorithm Variational Approach to Data Assimilation and Applicationto Volcanic Emissions. Pure Appl. Geophys. 2012, 169, 519–537. [Google Scholar] [CrossRef]
- Wilkins, K.; Mackie, S.; Watson, I.; Webster, H.N.; Thomson, D.; Dacre, H. Data insertion in volcanic ash cloud forecasting. Ann. Geophys. 2014, 2. [Google Scholar] [CrossRef]
- Fu, G.; Heemink, A.; Lu, S.; Segers, A.; Weber, K.; Lin, H. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements. Atmos. Environ. 2015, 115, 170–184. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Lin, H.; Heemink, A.; Segers, A.; Fu, G. Estimation of volcanic ash emissions through assimilating satellite dataand ground-based observations. J. Geophys. Res. Atmos. 2016, 121, 10971–10994. [Google Scholar] [CrossRef]
- Wilkins, K.; Watson, I.; Kristiansen, N.; Webster, H.; Thomson, D.; Dacre, H.; Prata, A. Using data insertion with the NAME model to simulate the 8 May 2010 Eyjafjallajökull volcanic ash cloud. J. Geophys. Res. Atmos. 2016, 121. [Google Scholar] [CrossRef] [Green Version]
- Fu, G.; Prata, F.; Lin, H.; Heemink, A.; Segers, A.; Lu, S. Data assimilation for volcanic ash plumes using a satellite observational operator: A case study on the 2010 Eyjafjallajökull volcanic eruption. Atmos. Chem. Phys. 2017, 17, 1187–1205. [Google Scholar] [CrossRef] [Green Version]
- Kristiansen, N.I.; Arnold, D.; Maurer, C.; Vira, J.; Radulescu, R.; Martin, D.; Stohl, A.; Stebel, K.; Sofiev, M.; O’Dowd, C.; et al. Improving model simulations of volcanic emission clouds and assessing model uncertainties. In Natural Hazard Uncertainty Assessment: Modeling and Decision Support, Geophysical Monograph 223; Riley, K., Webley, P., Thompson, M., Eds.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 105–124. [Google Scholar]
- Fu, G.; Lin, H.; Heemink, A.; Lu, S.; Segers, A.; van Velzen, N.; Lu, T.; Xu, S. Accelerating volcanic ash data assimilation using a mask-state algorithm based on an ensemble Kalman filter: A case study with the LOTOS-EUROS model (version 1.10). Geosci. Model Dev. 2017, 10, 1751–1766. [Google Scholar] [CrossRef] [Green Version]
- Prata, F.; Lynch, M. Passive Earth Observations of Volcanic Clouds in the Atmosphere. Atmosphere 2019, 10, 199. [Google Scholar] [CrossRef] [Green Version]
- Kylling, A.; Kahnert, M.; Lindqvist, H.; Nousiainen, T. Volcanic ash infrared signature: Porous non-spherical ash particle shapes compared to homogeneous spherical ash particles. Atmos. Meas. Tech. 2014, 7, 919–929. [Google Scholar] [CrossRef] [Green Version]
- Western, L.; Watson, I.; Francis, P. Uncertainty in two-channel infrared remote sensing retrievals of a well-characterised volcanic ash cloud. Bull. Volc. 2015, 77, 67. [Google Scholar] [CrossRef] [Green Version]
- Hort, M. VAAC Operational Dispersion Model Configuration Snap Shot. In Proceedings of the Conjoint 7th WMO VAAC Best Practices Workshop (VAAC BP/7) and 9th WMO/IUGG Volcanic Ash Scientific Advisory Group Meeting (VASAG/9), Washington, DC, USA, 21–22 November 2019. [Google Scholar]
- Mollick, E. Establishing Moore’s law. IEEE Ann. Hist. Comput. 2006, 28, 62–75. [Google Scholar] [CrossRef]
- Lawrence, B.; Rezny, M.; Budich, R.; Bauer, P.; Behrens, J.; Carter, M.; Deconinck, W.; Ford, R.; Maynard, C.; Mullerworth, S.; et al. Crossing the chasm: How to develop weather and climate models for next generation computers? Geosci. Model Dev. 2018, 11, 1799–1821. [Google Scholar] [CrossRef] [Green Version]
- Folch, A.; ChEESE Partners. A Center of Excellence for Exascale in Solid Earth. Geophys. Res. Abstr. 2019, 21, 1. [Google Scholar]
Eruption Source Parameter | 14th April 2010 | 21st May 2011 | Current |
---|---|---|---|
Plume Height | • Top height set by user | • Top height set by user | • Top and bottom height set by user (Default) |
• Top and bottom height | |||
output from buoyant plume model | |||
Mass Eruption Rate | • N/A | • Mastin Relationship | • Mastin Relationship (Default) |
(MER) | • Set by user | ||
• Output from buoyant plume model | |||
Distal Fine Ash Fraction | • N/A | • 5% | • 5% (Default) |
(DFAF) | • Set by user | ||
Particle Size Distribution | • Default (Redoubt 1990) | • Default (Redoubt 1990) | • Default (Redoubt 1990) |
(PSD) | • Coarse (Hekla 1991) | ||
• Fine (Eyjafjallajökull 2010) | |||
Particle Density | • 2300 kg m | • 2300 kg m | • 2300 kg m |
Particle Shape | • Spherical | • Spherical | • Sphericity 0.5 (Default) |
• Spherical | |||
• Extremely non-spherical (sphericity 0.3) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beckett, F.M.; Witham, C.S.; Leadbetter, S.J.; Crocker, R.; Webster, H.N.; Hort, M.C.; Jones, A.R.; Devenish, B.J.; Thomson, D.J. Atmospheric Dispersion Modelling at the London VAAC: A Review of Developments since the 2010 Eyjafjallajökull Volcano Ash Cloud. Atmosphere 2020, 11, 352. https://doi.org/10.3390/atmos11040352
Beckett FM, Witham CS, Leadbetter SJ, Crocker R, Webster HN, Hort MC, Jones AR, Devenish BJ, Thomson DJ. Atmospheric Dispersion Modelling at the London VAAC: A Review of Developments since the 2010 Eyjafjallajökull Volcano Ash Cloud. Atmosphere. 2020; 11(4):352. https://doi.org/10.3390/atmos11040352
Chicago/Turabian StyleBeckett, Frances M., Claire S. Witham, Susan J. Leadbetter, Ric Crocker, Helen N. Webster, Matthew C. Hort, Andrew R. Jones, Benjamin J. Devenish, and David J. Thomson. 2020. "Atmospheric Dispersion Modelling at the London VAAC: A Review of Developments since the 2010 Eyjafjallajökull Volcano Ash Cloud" Atmosphere 11, no. 4: 352. https://doi.org/10.3390/atmos11040352
APA StyleBeckett, F. M., Witham, C. S., Leadbetter, S. J., Crocker, R., Webster, H. N., Hort, M. C., Jones, A. R., Devenish, B. J., & Thomson, D. J. (2020). Atmospheric Dispersion Modelling at the London VAAC: A Review of Developments since the 2010 Eyjafjallajökull Volcano Ash Cloud. Atmosphere, 11(4), 352. https://doi.org/10.3390/atmos11040352