Influence of Atmospheric Circulation on Aerosol and its Optical Characteristics in the Pearl River Delta Region
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Meteorological Data
2.3. Reanalysis Data
2.4. PM2.5 Concentration and AOD Data
2.5. Objective Circulation Classification
2.6. Statistical Analysis Method
3. Results and Discussion
3.1. PM2.5 Concentration Trends and Optical Characteristics
3.2. Weather Characteristics of Different Circulation Patterns
3.3. Relation between Different Circulation Patterns and Near-surface PM2.5 Concentration
3.4. Aerosol Optical and Radiation Characteristics under Different Circulation Patterns
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, D.; Tie, X.; Li, C.; Ying, Z.; Lau, A.K.; Huang, J.; Deng, X.; Bi, X. An extremely low visibility event over the Guangzhou region: A case study. Atmos. Environ. 2005, 39, 6568–6577. [Google Scholar] [CrossRef]
- Wu, D.; Tie, X.; Deng, X. Chemical characterizations of soluble aerosols in southern China. Chemosphere 2006, 64, 749–757. [Google Scholar] [CrossRef]
- Wu, D. Review of China’s haze weather in recent ten years. J. Environ. Sci. 2012, 32, 257–269. [Google Scholar]
- Song, C.; He, J.; Wu, L.; Jin, T.; Chen, X.; Li, R.; Ren, P.; Zhang, L.; Mao, H. Health burden attributable to ambient PM2.5 in China. Environ. Pollut. 2017, 223, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jiang, W.M.; Guo, W.L.; Guo, W.L.; Miao, S.G.; Chen, X.Y.; Ji, C.P.; Wang, X.Y. Effects of urban agglomeration development on local atmospheric pollutant diffusion in the Pearl River delta region. J. Environ. Sci. 2005, 25, 700–710. [Google Scholar]
- 2013–2017 China Environmental Quality Bulletin [2018-05-31]. Available online: http://www.mee.gov.cn/hjzl/zghjzkgb/lnzghjzkgb/ (accessed on 7 January 2020).
- Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. 2016. Available online: https://www.who.int/phe/publications/air-pollution-global-assessment/en/ (accessed on 10 March 2020).
- He, J.; Wu, L.; Mao, H.; Li, R. Effects of meteorological conditions on air quality in Langfang city, Hebei province. Environ. Sci. Res. 2016, 29, 791–799. [Google Scholar]
- Zhang, X.Y.; Sun, J.Y.; Wang, Y.Q.; Li, W.J.; Zhang, Q.; Wang, W.G.; Quan, J.N.; Cao, G.L.; Wang, J.Z.; Yang, Y.Q.; et al. The causes of China’s fog-haze and its governance. Chin. Sci. Bull. 2013, 58, 1178–1187. [Google Scholar]
- Wang, L.; Wang, Y.; Wang, Y.; Sun, Y.; Ji, D.; Ren, Y. Relationship between different synoptic weather patterns and concentrations of atmospheric pollutants in Beijing during summer and autumn. China Environ. Sci. 2010, 30, 924–930. [Google Scholar]
- Wang, W.; Chen, H.S.; Wu, Q.; Wei, L.; Wang, Z.; Li, C.; Chen, D.; Jiang, Z.; Wu, W. Numerical study of PM2.5 regional transport over Pearl River Delta during a winter heavy haze event. Acta Sci. Circumstantiae 2016, 36, 2741–2751. [Google Scholar]
- Zhang, X.X. Source Apportionment Based on Long-Term PM Compositional Monitoring at Multiple Stations over the Pearl River Delta. Master’s Thesis, South China University of Technology, Guangzhou, China, 2018. [Google Scholar]
- Lai, A.Q.; Chen, X.Y.; Liu, Y.M.; Wang, X.M.; Fan, Q. Characteristics of complex pollution with high concentrations of PM2.5 and O3 over the Pearl River Delta, China. Acta Sci. Nat. Univ. Sunyatseni 2018, 57, 30–36. [Google Scholar]
- Wang, W.D.; Chen, H.S.; Yao, X.F.; Zheng, H.T.; Yan, P.Z.; Wu, W.W.; Xu, X.Y.; Huang, J.L.; Wang, Z.F. A Study of the Meteorological Conditions and Synoptic Factors in Pollution Episodes of Zhongshan during 2013. Environ. Monit. China 2016, 32, 44–52. [Google Scholar]
- Wang, Y.; Wang, Z.; Chen, X.; Wang, Z.; Fan, S.; Chen, D.; Wu, Q. Impact of typical meteorological conditions on air pollution over Pearl River Delta in autumn. Acta Sci. Circumstantiae 2017, 37, 3229–3239. [Google Scholar]
- Zhang, H.Y.; Wang, X.S.; Lu, K.D.; Zhang, Y. Impact of Typical Meteorological Conditions on the O3 and PM10 Pollution Episodes in the Pearl River Delta in Autumn. Acta Sci. Nat. Univ. Pekin. 2014, 50, 565–576. [Google Scholar]
- Xiao, X.; Fan, S.J.; Su, R. Characteristics of a regional air pollution process over the Pearl River Delta during October 2011. Acta Sci. Circumstantiae 2014, 34, 290–296. [Google Scholar]
- Xu, J.M.; Chang, L.Y.; Ma, J.H.; Mao, Z.C.; Chen, L.; Cao, Y. Objective synoptic weather classification on PM2.5 pollution during autumn and winter seasons in Shanghai. Acta Sci. Circumstantiae 2016, 36, 4303–4314. [Google Scholar]
- Zhang, Y.; Wang, S.G.; Jia, X.W.; Lian, J.B.; Zhang, X.L.; Yang, X. Study on an objective synoptic typing method for air pollution weather in North China during winter half year. Acta Sci. Circumstantiae 2018, 38, 3826–3833. [Google Scholar]
- He, J.; Gong, S.; Zhou, C.; Lu, S.; Wu, L.; Chen, Y.; Yu, Y.; Zhao, S.; Yu, L.; Yin, C. Analyses of winter circulation types and their impacts on haze pollution in Beijing. Atmos. Environ. 2018, 192, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Niu, T.; He, J.; Ma, Z.; Liu, P.; Xiao, D.; Hu, J.; Yang, J.; Yan, X. Classifcation of circulation patterns during the formation and dissipation of continuous pollution weather over the Sichuan Basin, China. Atmos. Environ. 2020, 223, 117244. [Google Scholar] [CrossRef]
- He, J.; Yu, Y.; Xie, Y.; Mao, H.; Wu, L.; Liu, N.; Zhao, S. Numerical model-based artificial neural network model and its application for quantifying impact factors of urban air quality. Water Air Soil Pollut. 2016, 227, 235. [Google Scholar] [CrossRef]
- Huang, Z.Z.; Li, C.M.; Zhai, Z.H.; Ye, W.R. Impacts of climate warming on phenophases in Guangdong. Ecol. Environ. Sci. 2012, 21, 991–996. [Google Scholar]
- Liu, C.H.; Deng, X.J.; Zhu, B. Characteristics of GSR of China’s three major economic regions in the past 10 years and its relationship with O3 and PM2.5. China Environ. Sci. 2018, 38, 2820–2829. [Google Scholar]
- The National Meteorological Information Center (NMIC). Available online: http://data.cma.cn/ (accessed on 20 September 2019).
- The ECWMF ERA-Interim reanalysis data. Available online: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim (accessed on 20 September 2019).
- Ma, C.C.; Yu, Y.; He, J.J.; Chen, X.; Xie, J. Analyses of Simulation Result in Loess Plateau by WRF Model with Two Reanalysis Data. Plateau Meteorol. 2014, 33, 698–711. [Google Scholar]
- The China National Environmental Monitoring Centre (CNEMC). Available online: http://106.37.208.233:20035/ (accessed on 20 September 2019).
- Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 9791–9806. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.P.; Zhu, T.; Zhang, Q.H.; Li, C.C.; Shu, H.L.; Ying, Y.; Dai, Z.P.; Wang, X.; Liu, X.Y.; Liang, A.M.; et al. The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings. Atmos. Chem. Phys. 2012, 12, 5031–5053. [Google Scholar] [CrossRef] [Green Version]
- Huth, R. An inter comparison of computer-assisted circulation classification methods. Int. J. Climatol. 1996, 16, 893–922. [Google Scholar] [CrossRef]
- Huth, R.; Beck, C.; Philipp, A.; Demuzere, M.; Ustrnul, Z.; Cahynová, M.; Kyselý, J.; Tveito, O.E. Classifications of atmospheric circulation patterns. Ann. N. Y. Acad. Sci. 2008, 1146, 105–152. [Google Scholar] [CrossRef]
- Hou, X.; Zhu, B.; Kumar, K.R.; Lu, W. Inter-annual variability in fine particulate matter pollution over China during 2013–2018: Role of meteorology. Atmos. Environ. 2019, 214, 116842. [Google Scholar] [CrossRef]
- WHO. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. 2005. Available online: https://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf;jsessionid=2FD62D84E408995F617A1AB71E86159C?sequence=1 (accessed on 10 March 2020).
- Zheng, Z.Y. A Evaluation Study of Anthropogenic Particulate Emissions Inventories Using Remote Sensing Data in the PRD Region. Master’s Thesis, South China University of Technology, Guangzhou, China, 2011. [Google Scholar]
- Fan, S.J.; Wang, A.Y.; Fan, Q.; Liu, J.; Wang, B.M. Atmospheric boundary layer concept model of the Pearl River Delta and its application. J. Trop. Meteorol. 2005, 21, 286–292. [Google Scholar]
- Zhao, Q.; Yang, S.Z.; Qiao, Y.L.; Yuan, G.Y. Analysis of the Optical Characteristic of Littoral Aerosol Influenced by Typhoon. Acta Opt. Sin. 2008, 11, 2046–2050. [Google Scholar] [CrossRef]
- Li, C.C.; Lau, A.K.; Mao, J.; Chen, A. An Aerosol Pollution Episode in Hong Kong with Remote Sensing Products of MODIS and LIDAR. Q. J. Appl. Meteorol. 2004, 6, 641–650. [Google Scholar]
- Coakley, J.A.; Cess, R.D.; Yurevich, F.B. The Effect of Tropospheric Aerosols on the Earth’s Radiation Budget: A Parameterization for Climate Models. J. Atmos. Sci. 1983, 40, 116–138. [Google Scholar] [CrossRef] [Green Version]
Type | Occurrence Frequency (%) | WS10 (m/s) | WD10 (°) | RH2 (%) | T2 (◦C) | PRE (mm/day) | BLH (m) |
---|---|---|---|---|---|---|---|
CT1 | 16.0 | 1.91 | 155.7 | 83.5 | 27.5 | 9.69 | 480.8 |
CT2 | 8.8 | 2.42 | 73.7 | 64.3 | 13.0 | 1.44 | 689.0 |
CT3 | 13.0 | 1.76 | 88.6 | 80.3 | 19.6 | 2.64 | 518.7 |
CT4 | 7.1 | 2.07 | 177.9 | 79.7 | 28.9 | 9.84 | 491.1 |
CT5 | 14.5 | 2.30 | 77.4 | 73.0 | 15.9 | 1.95 | 603.5 |
CT6 | 8.5 | 2.05 | 133.6 | 76.7 | 26.3 | 4.74 | 513.2 |
CT7 | 11.6 | 2.17 | 165.9 | 82.4 | 28.4 | 9.95 | 506.5 |
CT8 | 11.0 | 1.86 | 117.5 | 84.2 | 23.3 | 5.65 | 460.8 |
CT9 | 9.4 | 2.27 | 81.9 | 74.7 | 22.0 | 3.14 | 563.3 |
Average | 2.09 | 119.1 | 77.6 | 22.8 | 5.45 | 536.3 |
Type | CT1 | CT2 | CT3 | CT4 | CT5 | CT6 | CT7 | CT8 | CT9 |
---|---|---|---|---|---|---|---|---|---|
CT1 | *** | *** | *** | *** | *** | / | *** | *** | |
CT2 | ** | *** | / | *** | *** | *** | ** | ||
CT3 | *** | *** | *** | *** | *** | *** | |||
CT4 | *** | / | *** | *** | *** | ||||
CT5 | *** | *** | *** | ** | |||||
CT6 | *** | ** | *** | ||||||
CT7 | *** | *** | |||||||
CT8 | * | ||||||||
CT9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; He, J.; Lai, X.; Zhang, C.; Zhang, L.; Gong, S.; Che, H. Influence of Atmospheric Circulation on Aerosol and its Optical Characteristics in the Pearl River Delta Region. Atmosphere 2020, 11, 288. https://doi.org/10.3390/atmos11030288
Liu Y, He J, Lai X, Zhang C, Zhang L, Gong S, Che H. Influence of Atmospheric Circulation on Aerosol and its Optical Characteristics in the Pearl River Delta Region. Atmosphere. 2020; 11(3):288. https://doi.org/10.3390/atmos11030288
Chicago/Turabian StyleLiu, Yilin, Jianjun He, Xin Lai, Chenwei Zhang, Lei Zhang, Sunling Gong, and Huizheng Che. 2020. "Influence of Atmospheric Circulation on Aerosol and its Optical Characteristics in the Pearl River Delta Region" Atmosphere 11, no. 3: 288. https://doi.org/10.3390/atmos11030288
APA StyleLiu, Y., He, J., Lai, X., Zhang, C., Zhang, L., Gong, S., & Che, H. (2020). Influence of Atmospheric Circulation on Aerosol and its Optical Characteristics in the Pearl River Delta Region. Atmosphere, 11(3), 288. https://doi.org/10.3390/atmos11030288