Development of Multiple Linear Regression for Particulate Matter (PM10) Forecasting during Episodic Transboundary Haze Event in Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Multiple Linear Regression
2.3. Performance Indicator
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thepnuan, D.; Chantara, S.; Lee, C.T.; Lin, N.H.; Tsai, Y.I. Molecular Markers for Biomass Burning Associated with the Characterization of PM2.5 and Component Sources during Dry Season Haze Episodes in Upper South East Asia. Sci. Total Environ. 2019, 658, 708–722. [Google Scholar] [CrossRef] [PubMed]
- Dotse, S.Q.; Dagar, L.; Petra, M.I.; Silva, L.C.D. Influence of Southeast Asian Haze Episodes on High PM10 Concentrations across Brunei Darussalam. Environ. Pollut. 2016, 219, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.S.; Nor, A.F.M.; Fazilan, N.N.; Sulaiman, Z. Transboundary Air Pollution in Malaysia: Impact and Perspective on Haze. Nova J. Eng. Appl. Sci. 2016, 5, 1–11. [Google Scholar]
- Cheong, K.H.; Ngiam, N.J.; Morgan, G.G.; Pek, P.P.; Tan, B.Y.; Lai, J.W.; Koh, J.M.; Ong, M.E.H.; Ho, A.F.W. Acute Health Impacts of the Southeast Asian Transboundary Haze Problem—A Review. Int. J. Environ. Res. Public Health 2019, 16, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Latif, M.T.; Othman, M.; Idris, N.; Juneng, L.; Abdullah, A.M.; Hamzah, W.P.; Khan, M.F.; Sulaiman, N.M.N.; Jewaratnam, J.; Aghamohammadi, N.; et al. Impact of Regional Haze towards Air Quality in Malaysia: A Review. Atmos. Environ. 2018, 177, 28–44. [Google Scholar] [CrossRef]
- Sahani, M.; Zainon, N.A.; Mahiyuddin, W.R.W.; Latif, M.T.; Hod, R.; Khan, M.F.; Tahir, N.M.; Chan, C.C. A Case-Crossover Analysis of Forest Fire Haze Events and Mortality in Malaysia. Atmos. Environ. 2014, 96, 257–265. [Google Scholar] [CrossRef]
- Forsyth, T. Public Concerns about Transboundary Haze: A Comparison of Indonesia, Singapore, and Malaysia. Glob. Environ. Chang. 2014, 25, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Oanh, N.T.K.; Ly, B.T.; Tipayarom, D.; Manandhar, B.R.; Prapat, P.; Simpson, C.D.; Liu, L.J.S. Characterization of Particulate Matter Emission from Open Burning of Rice Straw. Atmos. Environ. 2011, 45, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zheng, C.; Ma, Z.; Quan, W. Acute and Cumulative Effects of Haze Fine Particles on Mortality and the Seasonal Characteristics in Beijing, China, 2005–2013: A Time-Stratified Case-Crossover Study. Int. J. Environ. Res. Public Health 2019, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Zhang, J.E.; Wang, C.; Duan, X.; Wang, Y. Escape or Stay? Effects of Haze Pollution on Domestic Travel: Comparative Analysis of Different Regions in China. Sci. Total Environ. 2019, 690, 151–157. [Google Scholar] [CrossRef]
- How, C.Y.; Ling, Y.E. The Influence of PM2.5 and PM10 on Air Pollution Index (API). Environmental Engineering, Hydraulics and Hydrology. In Proceedings of the Civil Engineering, Johor, Malaysia, 7–8 June 2016. [Google Scholar]
- Afroz, R.; Hassan, M.N.; Ibrahim, N.A. Review of Air Pollution and Health Impacts in Malaysia. Environ. Res. 2003, 92, 71–77. [Google Scholar] [CrossRef]
- Kusumaningtyas, S.D.A.; Aldrian, E. Impact of the June 2013 Riau Province Sumatera Smoke Haze Event on Regional Air Pollution. Environ. Res. Lett. 2016, 11, 075007. [Google Scholar] [CrossRef]
- Department of Environment, Malaysia. Malaysia Environmental Quality Report 2015. Available online: https://www.doe.gov.my/portalv1/en/ (accessed on 15 December 2019).
- Sun, J.; Wu, F.; Hu, B.; Tang, G.; Zhang, J.; Wang, Y. VOC Characteristics, Emissions and Contributions to SOA Formation during Hazy Episodes. Atmos. Environ. 2016, 141, 560–570. [Google Scholar] [CrossRef]
- Hoyle, C.R.; Boy, M.; Donahue, N.M.; Fry, J.L.; Glasius, M.; Guenther, A.; Hallar, A.G.; Huff Hartz, K.; Petters, M.D.; Petäjä, T.; et al. A Review of the Anthropogenic Influence on Biogenic Secondary Organic Aerosol. Atmos. Chem. Phys. 2011, 11, 321–343. [Google Scholar] [CrossRef] [Green Version]
- Jaafar, S.A.; Latif, M.T.; Razak, I.S.; Wahid, N.B.A.; Khan, M.F.; Srithawirat, T. Composition of Carbohydrates, Surfactants, Major Elements and Anions in PM2.5 during the 2013 Southeast Asia High Pollution Episode in Malaysia. Particuology 2018, 37, 119–126. [Google Scholar] [CrossRef]
- Othman, M.; Latif, M.T. Dust and Gas Emissions from Small-Scale Peat Combustion. Aerosol Air Qual. Res. 2013, 13, 1045–1059. [Google Scholar] [CrossRef]
- Koppmann, R.; Czapiewski, K.V.; Reid, J.S. A Review of Biomass Burning Emissions, Part I: Gaseous Emissions of Carbon Monoxide, Methane, Volatile Organic Compounds, and Nitrogen Containing Compounds. Atmos. Chem. Phys. Discuss. 2005, 5, 10455–10516. [Google Scholar] [CrossRef] [Green Version]
- Othman, J.; Sahani, M.; Mahmud, M.; Ahmad, M.K.S. Transboundary Smoke Haze Pollution in Malaysia: Inpatient Health Impacts and Economic Valuation. Environ. Pollut. 2014, 189, 194–201. [Google Scholar] [CrossRef]
- Hou, J.; An, Y.; Song, H.; Chen, J. The Impact of Haze Pollution on Regional Eco-Economic Treatment Efficiency in China: An Environmental Regulation Perspective. Int. J. Environ. Res. Public Health 2019, 16, 4059. [Google Scholar] [CrossRef] [Green Version]
- Rahman, H.A. Haze Phenomenon in Malaysia: Domestic or Transboudry Factor? Int. J. Chem. Environ. Biol. Sci. 2013, 1, 597–599. [Google Scholar]
- Song, Y.; Guo, S.; Zhang, M. Assessing Customers’ Perceived Value of the Anti-Haze Cosmetics under Haze Pollution. Sci. Total Environ. 2019, 685, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Rembiesa, J.; Ruzgas, T.; Engblom, J.; Holefors, A. The Impact of Pollution on Skin and Proper Efficacy Testing for Anti-Pollution Claims. Cosmetics 2018, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vierkötter, A.; Schikowski, T.; Ranft, U.; Sugiri, D.; Matsui, M.; Krämer, U.; Krutmann, J. Airborne Particle Exposure and Extrinsic Skin Aging. J. Investig. Dermatol. 2010, 130, 2719–2726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delavar, M.R.; Gholami, A.; Shiran, G.R.; Rashidi, Y.; Nakhaeizadeh, G.R.; Fedra, K.; Afshar, S.H. A Novel Method for Improving Air Pollution Prediction Based on Machine Learning Approaches: A Case Study Applied to the Capital City of Tehran. Int. J. Geo Inf. 2019, 8, 99. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, S.; Ismail, M.; Fong, S.Y. Multiple Linear Regression (MLR) Models for Long Term PM10 Concentration Forecasting during Different Monsoon Seasons. J. Sustain. Sci. Manag. 2017, 12, 60–69. [Google Scholar]
- Mishra, D.; Goyal, P.; Upadhyay, A. Artificial Intelligence Based Approach to Forecast PM2.5 during Haze Episodes: A Case Study of Delhi, India. Atmos. Environ. 2015, 102, 239–248. [Google Scholar]
- Zounemat-Kermani, M. Hourly Predictive Levenberg-Marquardt ANN and Multi Linear Regression Models for Predicting of Dew Point Temperature. Meteorol. Atmos. Phys. 2012, 117, 181–192. [Google Scholar] [CrossRef]
- Yuen, F.S.; Abdullah, S.; Ismail, M. Forecasting of Particulate Matter (PM10) Concentration based on Gaseous Pollutants and Meteorological Factors for Different Monsoons of Urban Coastal Area in Terengganu. J. Sustain. Sci. Manag. 2018, 13, 3–17. [Google Scholar]
- Abdul-Wahab, S.A.; Bakheit, C.S.; Al-Alawi, S.M. Principal Component and Multiple Regression Analysis in Modelling of Ground-Level Ozone and Factors Affecting Its Concentrations. Environ. Model. Softw. 2005, 20, 1263–1271. [Google Scholar] [CrossRef]
- Abdullah, S.; Ismail, M.; Ahmed, A.N.; Abdullah, A.M. Forecasting Particulate Matter Concentration Using Linear and Non-Linear Approaches for Air Quality Decision Support. Atmosphere 2019, 10, 667. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, S.; Ismail, M.; Fong, S.Y.; Ahmed, A.N. Evaluation for Long Term PM10 Concentration Forecasting Using Multi Linear Regression (MLR) and Principal Component Regression (PCR) Models. EnvironmentAsia 2016, 9, 101–110. [Google Scholar]
- Hashim, N.I.M.; Noor, N.M. Variations of Particulate Matter (PM10) Concentration during Haze Episodes in Malaysia. In Proceedings of the 2017 Bangkok International Intellectual Property, Invention, Innovation and Technology Exposition, Bangkok, Thailand, 4 January 2017. [Google Scholar]
- Awang, N.R.; Ramli, N.A.; Yahaya, A.S.; Elbayoumi, M. Multivariate Methods to Predict Ground Level Ozone during Daytime, Nighttime, and Critical Conversion Time in Urban Areas. Atmos. Pollut. Res. 2015, 6, 726–734. [Google Scholar] [CrossRef]
- Awang, N.R.; Elbayoumi, M.; Ramli, N.A.; Yahaya, A.S. Diurnal Variations of Ground-Level Ozone in Three Port Cities in Malaysia. Air Qual. Atmos. Health 2016, 9, 25–39. [Google Scholar] [CrossRef]
- Latif, M.T.; Dominick, D.; Ahamad, F.; Khan, M.F.; Juneng, L.; Hamzah, F.M.; Nadzir, M.S.M. Long Term Assessment of Air Quality from a Background Station on the Malaysian Peninsula. Sci. Total Environ. 2014, 482–483, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Banan, N.; Latif, M.T.; Juneng, L.; Ahamad, F. Characteristics of Surface Ozone Concentrations at Stations with Different Backgrounds in the Malaysian Peninsula. Aerosol Air Qual. Res. 2013, 13, 1090–1106. [Google Scholar] [CrossRef] [Green Version]
- Kang, H. The Prevention and Handling of the Missing Data. Korean J. Anesthesiol. 2013, 64, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, S.; Ismail, M.; Samat, N.N.A.; Ahmed, A.N. Modelling Particulate Matter (PM10) Concentration in Industrialized Area: A Comparative Study of Linear and Nonlinear Algorithms. ARPN J. Eng. Appl. Sci. 2018, 13, 8227–8235. [Google Scholar]
- Roy, K.; Ambure, P. The Double Cross-Validation Software Tool for MLR QSAR Model Development. Chemom. Intell. Lab. Syst. 2016, 159, 108–126. [Google Scholar] [CrossRef]
- Ul-Saufie, A.Z.; Yahya, A.S.; Ramli, N.A.; Hamid, N.A. Comparison Between Multiple Linear Regression and Feed Forward Back Propagation Neural Network Models for Predicting PM10 Concentration Level Based On Gaseous and Meteorological Parameters. Int. J. Appl. Sci. Technol. 2011, 1, 42–49. [Google Scholar]
- Department of Environment, Malaysia. Malaysia Environmental Quality Report 2016. Available online: https://www.doe.gov.my/portalv1/en/ (accessed on 15 December 2019).
- Latif, M.T.; Abidin, E.Z.; Praveena, S.M. The Assessment of Ambient Air Pollution Trend in Klang Valley. World Environ. 2015, 5, 1–11. [Google Scholar]
- Rajab, J.M.; Tan, K.C.; Lim, H.S.; Matjafri, M.Z. Investigation on the Carbon Monoxide Pollution over Peninsular Malaysia Caused by Indonesia Forest Fires from AIRS Daily Measurement. Adv. Air Pollut. 2011, 8, 115–136. [Google Scholar]
- Bartington, S.E.; Bakolis, I.; Devakumar, D.; Kurmi, O.P.; Gulliver, J.; Chaube, G.; Manandhar, D.S.; Saville, N.M.; Costello, A.; Osrin, D.; et al. Patterns of Domestic Exposure to Carbon Monoxide and Particulate Matter in Households Using Biomass Fuel in Janakpur, Nepal. Environ. Pollut. 2017, 220, 38–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusof, K.M.K.K.; Azid, A.; Sani, M.S.A.; Samsudin, M.S.; Amin, S.N.M.; Rani, N.L.A.; Jamalani, M.A. The Evaluation on Artificial Neural Networks (ANN) and Multiple Linear Regressions (MLR) Models over Particulate Matter (PM10) Variability during Haze and Non-Haze Episodes: A Decade Case Study. Malays. J. Fundam. Appl. Sci. 2019, 15, 164–172. [Google Scholar] [CrossRef]
- Petetin, H.; Sauvage, B.; Parrington, M.; Clark, H.; Fontaine, A.; Athier, G.; Blot, R.; Boulanger, D.; Cousin, J.M.; Nédélec, P.; et al. The Role of Biomass Burning as Derived from the Tropospheric CO Vertical Profiles Measured by IAGOS Aircraft in 2002–2017. Atmos. Chem. Phys. 2018, 18, 17277–17306. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, Y.; Zeng, R.; Srinivasan, R.S.; Ahrentzen, S. Random Forest Based Hourly Building Energy Prediction. Energy Build. 2018, 171, 11–25. [Google Scholar] [CrossRef]
- Vakili, M.; Sabbagh-Yazdi, S.R.; Khosrojerdi, S.; Kalhor, K. Evaluating the Effect of Particulate Matter Pollution on Estimation of Daily Global Solar Radiation Using Artificial Neural Network Modeling Based on Meteorological Data. J. Clean. Prod. 2017, 141, 1275–1285. [Google Scholar] [CrossRef]
- Domańska, D.; Wojtylak, M. Explorative Forecasting of Air Pollution. Atmos. Environ. 2014, 92, 19–30. [Google Scholar] [CrossRef]
Classification | Station ID | Location | Latitude | Longitude |
---|---|---|---|---|
Industrial | CA0003 | Cenderawasih Primary School, Perai | N05° 23.470 | E100° 23.213 |
Industrial | CA0004 | Medical Store, Kuching, Sarawak | N01° 33.734 | E110° 23.329 |
Sub-Urban | CA0009 | Seberang Jaya II Primary School, Perai, Penang | N05° 23.890 | E100° 24.194 |
Industrial | CA0010 | Taman Semarak (Phase II), Nilai, Negeri Sembilan | N02° 49.246 | E101° 48.877 |
Urban | CA0011 | Raja Zarina Secondary School, Klang, Selangor | N03° 00.620 | E101°24.484 |
Sub-Urban | CA0026 | Sibu Police Main Office, Sarawak | N02° 18.856 | E111° 49.906 |
Sub-Urban | CA0027 | Bintulu Police Station, Sarawak | N03° 10.587 | E113° 02.433 |
Sub-Urban | CA0028 | Dato Permaisuri Secondary School, Miri, Sarawak | N04° 25.456 | E114° 00.731 |
Sub-Urban | CA0032 | Langkawi Sport Complex, Langkawi, Kedah | N06° 19.903 | E099° 51.517 |
Sub-Urban | CA0033 | MADA, Behor Temak, Kangar, Perlis | N06° 25.424 | E100° 11.046 |
Urban | CA0040 | Islamic Religious Secondary School, Mergong, Alor Setar, Kedah | N06° 08.218 | E100° 20.880 |
Sub-Urban | CA0044 | Vocational Secondary School, Muar, Johor | N02° 03.715 | E102° 35.587 |
Descriptive Statistical | 2005 (N = 369) | 2006 (N = 918) | 2010 (N = 61) | 2011 (N = 260) | 2012 (N = 402) | 2013 (N = 236) | 2014 (N = 613) |
---|---|---|---|---|---|---|---|
Mean (µg/m3) | 274.860 | 199.100 | 275.100 | 178.930 | 204.270 | 260.650 | 233.520 |
Median (µg/m3) | 237.000 | 180.000 | 196.000 | 168.000 | 181.000 | 210.000 | 187.000 |
Std. Deviation (µg/m3) | 136.103 | 56.435 | 170.717 | 37.299 | 63.071 | 141.508 | 131.163 |
Variance | 18524.096 | 3184.955 | 29144.323 | 1392.180 | 3977.931 | 20024.500 | 17203.855 |
Minimum (µg/m3) | 150.000 | 150.000 | 150.000 | 150.000 | 150.000 | 150.000 | 150.000 |
Maximum (µg/m3) | 994.000 | 573.000 | 866.000 | 497.000 | 533.000 | 995.000 | 995.000 |
Parameter | PM10 | WS | T | RH | NO | SO2 | NO2 | O3 | CO |
---|---|---|---|---|---|---|---|---|---|
PM10 | 1.00 | 0.043 | 0.055 * | −0.076 ** | −0.025 | 0.131 ** | 0.059 ** | 0.046 * | 0.512 ** |
WS | 1.00 | 0.517 ** | −0.537 ** | −0.380 ** | −0.029 | −0.372 ** | 0.615 ** | −0.206 ** | |
T | 1.00 | −0.820 ** | −0.259 ** | 0.050 * | −0.088 ** | 0.621 ** | 0.006 | ||
RH | 1.00 | 0.230 ** | −0.196 ** | 0.003 | −0.590 ** | −0.038 | |||
NO | 1.00 | 0.259 ** | 0.617 ** | −0.671 ** | 0.325 ** | ||||
SO2 | 1.00 | 0.458 ** | −0.141 ** | 0.356 ** | |||||
NO2 | 1.00 | −0.443 ** | 0.437 ** | ||||||
O3 | 1.00 | −0.243 ** | |||||||
CO | 1.00 |
Prediction Hour | Model | R2 | VIF | Durbin-Watson |
---|---|---|---|---|
Hour 1, t+1 | PM10,t+1 = 0.004 + 0.673 PM10 + 0.230 CO − 0.057 NO | 0.638 | 1.275–2.149 | 2.125 |
Hour 2, t+2 | PM10,t+2 = 0.019 + 0.597 PM10 + 0.141 CO − 0.053 NO | 0.452 | 1.275–2.149 | 1.201 |
Hour 3, t+3 | PM10,t+3 = 0.069 + 0.586 PM10 − 0.047 RH − 0.046 O3 | 0.353 | 1.006–1.629 | 0.932 |
Prediction Hour | RMSE | NAE | PA |
---|---|---|---|
Hour 1, t+1 | 126.728 | 0.325 | 0.668 |
Hour 2, t+2 | 156.506 | 0.403 | 0.431 |
Hour 3, t+3 | 164.978 | 0.429 | 0.359 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, S.; Napi, N.N.L.M.; Ahmed, A.N.; Mansor, W.N.W.; Mansor, A.A.; Ismail, M.; Abdullah, A.M.; Ramly, Z.T.A. Development of Multiple Linear Regression for Particulate Matter (PM10) Forecasting during Episodic Transboundary Haze Event in Malaysia. Atmosphere 2020, 11, 289. https://doi.org/10.3390/atmos11030289
Abdullah S, Napi NNLM, Ahmed AN, Mansor WNW, Mansor AA, Ismail M, Abdullah AM, Ramly ZTA. Development of Multiple Linear Regression for Particulate Matter (PM10) Forecasting during Episodic Transboundary Haze Event in Malaysia. Atmosphere. 2020; 11(3):289. https://doi.org/10.3390/atmos11030289
Chicago/Turabian StyleAbdullah, Samsuri, Nur Nazmi Liyana Mohd Napi, Ali Najah Ahmed, Wan Nurdiyana Wan Mansor, Amalina Abu Mansor, Marzuki Ismail, Ahmad Makmom Abdullah, and Zamzam Tuah Ahmad Ramly. 2020. "Development of Multiple Linear Regression for Particulate Matter (PM10) Forecasting during Episodic Transboundary Haze Event in Malaysia" Atmosphere 11, no. 3: 289. https://doi.org/10.3390/atmos11030289
APA StyleAbdullah, S., Napi, N. N. L. M., Ahmed, A. N., Mansor, W. N. W., Mansor, A. A., Ismail, M., Abdullah, A. M., & Ramly, Z. T. A. (2020). Development of Multiple Linear Regression for Particulate Matter (PM10) Forecasting during Episodic Transboundary Haze Event in Malaysia. Atmosphere, 11(3), 289. https://doi.org/10.3390/atmos11030289