Estimating Turbulent Fluxes in the Tropical Andes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Instrumentation
2.3. Data
2.4. Methods
2.4.1. Bulk Method
2.4.2. The Penman-Monteith Equation
3. Results and Discussion
3.1. The Bulk Method
3.2. Alternative Assumptions in the Application of the Bulk Method
3.2.1. Emissivity (ε)
3.2.2. Surface Humidity
3.2.3. Thermal Roughness Length
3.2.4. The Best Possible Estimation
3.3. The Penman-Monteith (PM) Equation
3.4. Monthly Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Burba, G.; Anderson, D. A Brief Practical Guide to Eddy Covariance Flux Measurements, 1.0.1th ed.; LI-COR Biosciences Inc.: Lincoln, NE, USA, 2010. [Google Scholar]
- Aubinet, M.; Vesala, T.; Papale, D. Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 9789400723504. [Google Scholar]
- Wang, K.; Liu, C.; Zheng, X.; Pihlatie, M.; Li, B.; Haapanala, S.; Vesala, T.; Liu, H.; Wang, Y.; Liu, G.; et al. Comparison between eddy covariance and automatic chamber techniques for measuring net ecosystem exchange of carbon dioxide in cotton and wheat fields. Biogeosciences 2013, 10, 6865–6877. [Google Scholar] [CrossRef] [Green Version]
- Lee, X.; Massman, W.; Law, B. Handbook of Micrometeorology; Lee, X., Massman, W., Law, B., Eds.; Atmospheric and Oceanographic Sciences Library; Springer: Dordrecht, The Netherlands, 2005; Volume 29, ISBN 978-1-4020-2264-7. [Google Scholar]
- Foken, T.; Wichura, B. Tools for quality assessment of surface-based flux measurements. Agric. For. Meteorol. 1996, 78, 83–105. [Google Scholar] [CrossRef]
- Berkowicz, R.; Prahm, L.P. Evaluation of the profile method for estimation of surface fluxes of momentum and heat. Atmos. Environ. 1982, 16, 2809–2819. [Google Scholar] [CrossRef]
- Tajfar, E.; Bateni, S.M.; Margulis, S.A.; Gentine, P.; Auligne, T.; Tajfar, E.; Bateni, S.M.; Margulis, S.A.; Gentine, P.; Auligne, T. Estimation of Turbulent Heat Fluxes via Assimilation of Air Temperature and Specific Humidity into an Atmospheric Boundary Layer Model. J. Hydrometeorol. 2019. [Google Scholar] [CrossRef]
- Xu, T.; Liang, S.; Liu, S. Estimating turbulent fluxes through assimilation of geostationary operational environmental satellites data using ensemble Kalman filter. J. Geophys. Res. 2011, 116, D09109. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Xu, T.; Bateni, S.; Neale, C.; Auligne, T.; Liu, S.; Wang, K.; Mao, K.; Yao, Y. Evaluation of the Weak Constraint Data Assimilation Approach for Estimating Turbulent Heat Fluxes at Six Sites. Remote Sens. 2018, 10, 1994. [Google Scholar] [CrossRef] [Green Version]
- Radić, V.; Menounos, B.; Shea, J.; Fitzpatrick, N.; Tessema, M.A.; Déry, S.J. Evaluation of different methods to model near-surface turbulent fluxes for a mountain glacier in the Cariboo Mountains, BC, Canada. Cryosphere 2017, 11, 2897–2918. [Google Scholar] [CrossRef] [Green Version]
- Basu, S. Hybrid Profile—Gradient Approaches for the Estimation of Surface Fluxes. Bound. Layer Meteorol. 2019, 170, 29–44. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Kustas, W.P.; Huang, C.; Kool, D.; Haghighi, E. Evaluation of soil resistance formulations for estimates of sensible heat flux in a desert vineyard. Agric. For. Meteorol. 2018, 260–261, 255–261. [Google Scholar] [CrossRef]
- Perez-Priego, O.; El-Madany, T.S.; Migliavacca, M.; Kowalski, A.S.; Jung, M.; Carrara, A.; Kolle, O.; Martín, M.P.; Pacheco-Labrador, J.; Moreno, G.; et al. Evaluation of eddy covariance latent heat fluxes with independent lysimeter and sapflow estimates in a Mediterranean savannah ecosystem. Agric. For. Meteorol. 2017, 236, 87–99. [Google Scholar] [CrossRef]
- Mauder, M.; Genzel, S.; Fu, J.; Kiese, R.; Soltani, M.; Steinbrecher, R.; Zeeman, M.; Banerjee, T.; De Roo, F.; Kunstmann, H. Evaluation of energy balance closure adjustment methods by independent evapotranspiration estimates from lysimeters and hydrological simulations. Hydrol. Process. 2018, 32, 39–50. [Google Scholar] [CrossRef]
- Schaller, C.; Foken, T. Flux calculation of short turbulent events—Comparison of three methods. Atmos. Meas. Tech. 2017, 10, 869–880. [Google Scholar] [CrossRef] [Green Version]
- Pozníková, G.; Fischer, M.; van Kesteren, B.; Orság, M.; Hlavinka, P.; Žalud, Z.; Trnka, M. Quantifying turbulent energy fluxes and evapotranspiration in agricultural field conditions: A comparison of micrometeorological methods. Agric. Water Manag. 2018, 209, 249–263. [Google Scholar] [CrossRef]
- Donateo, A.; Cava, D.; Contini, D. A Case Study of the Performance of Different Detrending Methods in Turbulent-Flux Estimation. Bound. Layer Meteorol. 2017, 164, 19–37. [Google Scholar] [CrossRef]
- Dyer, A.J.; Hicks, B.B. Flux-gradient relationships in the constant flux layer. Q. J. R. Meteorol. Soc. 1970, 96, 715–721. [Google Scholar] [CrossRef]
- Businger, J.A.; Wyngaard, J.C.; Izumi, Y.; Bradley, E.F. Flux-Profile Relationships in the Atmospheric Surface Layer. J. Atmos. Sci. 1971, 181–189. [Google Scholar] [CrossRef]
- Abdolghafoorian, A.; Farhadi, L.; Bateni, S.M.; Margulis, S.; Xu, T.; Abdolghafoorian, A.; Farhadi, L.; Bateni, S.M.; Margulis, S.; Xu, T. Characterizing the Effect of Vegetation Dynamics on the Bulk Heat Transfer Coefficient to Improve Variational Estimation of Surface Turbulent Fluxes. J. Hydrometeorol. 2017, 18, 321–333. [Google Scholar] [CrossRef]
- Tabari, H. Evaluation of reference crop evapotranspiration equations in various climates. Water Resour. Manag. 2010, 24, 2311–2337. [Google Scholar] [CrossRef]
- Padrón, R.S.; Wilcox, B.P.; Crespo, P.; Célleri, R. Rainfall in the Andean Páramo: New Insights from High-Resolution Monitoring in Southern Ecuador. J. Hydrometeorol. 2015, 16, 985–996. [Google Scholar] [CrossRef]
- Carrillo-Rojas, G.; Silva, B.; Rollenbeck, R.; Célleri, R.; Bendix, J. The breathing of the Andean highlands: Net ecosystem exchange and evapotranspiration over the páramo of southern Ecuador. Agric. For. Meteorol. 2019, 265, 30–47. [Google Scholar] [CrossRef]
- Córdova, M.; Carrillo-Rojas, G.; Crespo, P.; Wilcox, B.; Célleri, R. Evaluation of the Penman-Monteith (FAO 56 PM) Method for Calculating Reference Evapotranspiration Using Limited Data. Application to the Wet Páramo of Southern Ecuador. Mt. Res. Dev. 2015, 35, 230–239. [Google Scholar] [CrossRef] [Green Version]
- Mosquera, G.M.; Lazo, P.X.; Célleri, R.; Wilcox, B.P.; Crespo, P. Runoff from tropical alpine grasslands increases with areal extent of wetlands. Catena 2015, 125, 120–128. [Google Scholar] [CrossRef]
- Ochoa-Sánchez, A.; Crespo, P.; Célleri, R. Quantification of rainfall interception in the high Andean tussock grasslands. Ecohydrology 2018. [Google Scholar] [CrossRef]
- Sucozhañay, A.; Célleri, R. Impact of Rain Gauges Distribution on the Runoff Simulation of a Small Mountain Catchment in Southern Ecuador. Water 2018, 10, 1169. [Google Scholar] [CrossRef] [Green Version]
- Correa, A.; Breuer, L.; Crespo, P.; Célleri, R.; Feyen, J.; Birkel, C.; Silva, C.; Windhorst, D. Spatially distributed hydro-chemical data with temporally high-resolution is needed to adequately assess the hydrological functioning of headwater catchments. Sci. Total Environ. 2018, 651, 1613–1626. [Google Scholar] [CrossRef]
- Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; et al. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol. 2001, 107, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Duynkerke, P.G. The roughness length for heat and other vegetation parameters for a surface of short grass. J. Appl. Meteorol. 1992, 31, 579–586. [Google Scholar] [CrossRef] [Green Version]
- Dyer, A.J. A Review of Flux-Profile Relationships. Bound. Layer Meteorol. 1974, 7, 363–372. [Google Scholar] [CrossRef]
- Beljaars, A.C.M.; Holtslag, A.A.M. Flux Parametrization over Land Surfaces for Atmospheric Models. J. Appl. Meteorol. 1990, 30, 327–341. [Google Scholar] [CrossRef]
- Berkowicz, R.; Prahm, L.P. Sensible Heat Flux Estimated from Routine Meteorological Data by the Resistance Method. J. Appl. Meteorol. 1982, 21, 1845–1864. [Google Scholar] [CrossRef] [Green Version]
- Rigden, A.; Li, D.; Salvucci, G. Dependence of thermal roughness length on friction velocity across land cover types: A synthesis analysis using AmeriFlux data. Agric. For. Meteorol. 2018, 249, 512–519. [Google Scholar] [CrossRef]
- Park, S.J.; Park, S.U.; Ho, C.H. Roughness length of water vapor over land surfaces and its influence on latent heat flux. Terr. Atmos. Ocean. Sci. 2010, 21, 855–867. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Wang, K.; Wan, Z.; Wang, P.; Sparrow, M.; Liu, J.; Zhou, X.; Haginoya, S. Estimation of surface long wave radiation and broadband emissivity using moderate resolution imaging spectroradiometer (MODIS) land surface temperature/emissivity products. J. Geophys. Res. D Atmos. 2005, 110, 1–12. [Google Scholar] [CrossRef]
- Snyder, W.C.; Wan, Z.; Zhang, Y.; Feng, Y.Z. Classification-based emissivity for land surface temperature measurement from space. Int. J. Remote Sens. 1998, 19, 2753–2774. [Google Scholar] [CrossRef]
- Rubio, E.; Caselles, V.; Coll, C.; Valour, E.; Sospedra, F. Thermal-infrared emissivites of natural surfaces: Improvements on the experimental set-up and new measurements. Int. J. Remote Sens. 2003, 24, 5379–5390. [Google Scholar] [CrossRef]
- Campbell, D.I. Energy Balance and Transpiration from Tussock Grassland in New Zealand. Bound. Layer Meteorol. 1989, 46, 133–152. [Google Scholar] [CrossRef]
- Ochoa-Sánchez, A.; Crespo, P.; Carrillo-Rojas, G.; Sucozhañay, A.; Célleri, R. Actual Evapotranspiration in the High Andean Grasslands: A Comparison of Measurement and Estimation Methods. Front. Earth Sci. 2019, 7, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Carrillo-Rojas, G.; Silva, B.; Córdova, M.; Célleri, R.; Bendix, J. Dynamic Mapping of Evapotranspiration Using an Energy Balance-Based Model over an Andean Páramo Catchment of Southern Ecuador. Remote Sens. 2016, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Buytaert, W.; Wyseure, G.; De Bievre, B.; Deckers, J. The effect of land-use changes on the hydrological behaviour of Histic Andosols in south Ecuador. Hydrol. Processes 2004, 19, 3985–3997. [Google Scholar] [CrossRef]
MAB (H) | R2 (H) | MAB(LE) | R2 (H) | ||
---|---|---|---|---|---|
ε = 1 | 99.74 | 0.81 | 202.93 | 0.60 | |
ε = 0.95 | 32.05 | 0.90 | 260.02 | 0.65 | |
ε = 0.95 | qs(rs = 10 s m−1) | 32.05 | 0.90 | 111.65 | 0.53 |
qs(rs = 200 s m−1) | 32.05 | 0.90 | 431,344.83 | 0.01 | |
ε = 0.95 | ΔRHmax = 5% | 32.05 | 0.90 | 157.81 | 0.74 |
ΔRHmax = 10% | 32.05 | 0.90 | 177.24 | 0.74 | |
ε = 0.95 | C1 = 0.70 | 25.94 | 0.89 | 152.93 | 0.66 |
C1 = 0.81 | 24.95 | 0.89 | 160.01 | 0.66 | |
C1 = 1.00 | 24.16 | 0.90 | 167.61 | 0.66 | |
ε = 0.95 | ΔRHmax = 5% C1 = 0.70 | 23.11 | 0.89 | 110.69 | 0.75 |
Best Estimation | Penman-Monteith | |||||
---|---|---|---|---|---|---|
Month | MAB (H) | R2 (H) | MAB (LE) | R2 (LE) | MAB (LE) | R2 (LE) |
January | 36.11 | 0.75 | 83.22 | 0.73 | 63.60 | 0.71 |
February | 30.20 | 0.74 | 94.43 | 0.71 | 63.87 | 0.71 |
March | 16.30 | 0.91 | 70.55 | 0.74 | 12.96 | 0.91 |
April | 19.99 | 0.94 | 77.04 | 0.78 | 16.86 | 0.86 |
May | 18.66 | 0.94 | 63.77 | 0.77 | 15.51 | 0.88 |
June | 25.76 | 0.93 | 84.49 | 0.72 | 20.76 | 0.78 |
July | 32.07 | 0.91 | 73.86 | 0.77 | 21.17 | 0.71 |
August | 28.28 | 0.94 | 93.27 | 0.77 | 18.84 | 0.83 |
September | 21.94 | 0.95 | 78.54 | 0.82 | 15.34 | 0.86 |
October | 26.72 | 0.89 | 108.41 | 0.74 | 19.37 | 0.87 |
November | 24.86 | 0.94 | 413.19 | 0.79 | 51.02 | 0.80 |
December | 28.17 | 0.90 | 117.72 | 0.79 | 70.90 | 0.81 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Córdova, M.; Bogerd, L.; Smeets, P.; Carrillo-Rojas, G. Estimating Turbulent Fluxes in the Tropical Andes. Atmosphere 2020, 11, 213. https://doi.org/10.3390/atmos11020213
Córdova M, Bogerd L, Smeets P, Carrillo-Rojas G. Estimating Turbulent Fluxes in the Tropical Andes. Atmosphere. 2020; 11(2):213. https://doi.org/10.3390/atmos11020213
Chicago/Turabian StyleCórdova, Mario, Linda Bogerd, Paul Smeets, and Galo Carrillo-Rojas. 2020. "Estimating Turbulent Fluxes in the Tropical Andes" Atmosphere 11, no. 2: 213. https://doi.org/10.3390/atmos11020213
APA StyleCórdova, M., Bogerd, L., Smeets, P., & Carrillo-Rojas, G. (2020). Estimating Turbulent Fluxes in the Tropical Andes. Atmosphere, 11(2), 213. https://doi.org/10.3390/atmos11020213