Uncertainties in the Annual Cycle of Rainfall Characteristics over West Africa in CMIP5 Models
Abstract
:1. Introduction
2. Data and Methods
- The frequency of daily precipitation events is the number of days with precipitation higher than 1 mm;
- The Simple daily intensity index is the mean intensity of daily precipitation events;
- The Consecutive Dry Days (CDD) index is the number of consecutive dry sequences of more than 5 days (dry spells). A dry day is defined as a day with precipitation less than 1 mm;
- The Consecutive Wet Days (CWD) index is the number of consecutive wet sequences (or wet spells) lasting more than 5 days. A wet day is defined as a day with precipitation higher than 1 mm;
- The 95th percentile of daily precipitation events (R95) is the value above which 5% of the daily precipitation events (days with precipitation higher than 1 mm) are found;
- Total precipitation with respect to the R95p (R95ptot) is the fraction of precipitation accounted for by the very wet days (daily rainfall above R95).
3. Results
3.1. The Annual Cycle of Mean Precipitation, Intensity and Frequency of Wet Days
3.2. The Annual Cycle of Extreme Precipitation Indices
3.3. Timing and Length of the Monsoon Season
3.4. Annual-Mean Precipitation over the Sahelian and Guinean Regions
4. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
WAM | West African Monsoon |
AEJ | African Easterly Jet |
AEWs | African easterly waves |
ITCZ | Inter-tropical Convergence Zone |
MJO | Madden Julian Oscillation |
IPCC | Intergovernmental Panel on Climate Change |
RCP | Representative Concentration Pathways |
CMIP5 | Coupled Model Intercomparison Project phase 5 |
GHG | Greenhouse Gas |
ETCCDI | Expert Team on Climate Change Detection and Indices |
SDII | Simple daily intensity index |
CDD | Consecutive Dry Days |
CWD | Consecutive Wet Days |
CHIRPS | Climate Hazards Group Infrared Precipitation with Station |
Appendix A
Sahel | Guinean Region | |||
---|---|---|---|---|
Datasets | Onset | Cessation | Onset | Cessation |
CHIRPS | 152 | 280 | 105 | 299 |
GPCP | 150 | 283 | 97 | 303 |
TRMM | 152 | 283 | 101 | 297 |
MMM | 142 | 283 | 125 | 277 |
BCC-CSM1-1-M | 140 | 294 | 153 | 282 |
CanESM2 | 125 | 276 | 108 | 293 |
CCSM4 | 121 | 281 | 107 | 294 |
CNRM-CM5 | 140 | 286 | 121 | 293 |
CSIRO-Mk3-6-0 | 141 | 291 | 105 | 306 |
EC-EARTH | 128 | 282 | 99 | 293 |
HadGEM2-ES | 141 | 265 | 141 | 265 |
IPSL-CM5A-LR | 165 | 285 | 165 | 285 |
IPSL-CM5A-MR | 171 | 284 | 174 | 282 |
MIROC-ESM | 131 | 278 | 93 | 288 |
MIROC4h | 134 | 280 | 107 | 301 |
MIROC5 | 140 | 286 | 97 | 305 |
MPI-ESM-LR | 158 | 288 | 134 | 296 |
MPI-ESM-MR | 160 | 290 | 134 | 298 |
MRI-CGCM3 | 135 | 277 | 141 | 272 |
Sahel | Guinean Region | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Datasets | FREQ | SDII | CDD | CWD | R95 | R95PTOT | FREQ | SDII | CDD | CWD | R95 | R95PTOT |
CHIRPS | 0.97 | 0.99 | 0.99 | 1.00 | 0.88 | 0.96 | 0.87 | 0.99 | ||||
GPCP | 0.98 | 0.98 | 0.98 | 1.00 | 0.97 | 0.98 | 0.96 | 0.99 | ||||
TRMM | 0.99 | 0.97 | 0.97 | 1.00 | 0.98 | 0.95 | 0.90 | 0.99 | ||||
BCC-CSM1-1-M | 1.00 | 0.87 | 0.98 | 1.00 | 0.91 | 0.98 | 0.81 | 0.95 | ||||
CanESM2 | 0.96 | 0.99 | 0.90 | 1.00 | 0.28 | 0.91 | 0.99 | 0.88 | 0.97 | |||
CCSM4 | 0.98 | 0.96 | 0.98 | 1.00 | 0.98 | 0.99 | 0.93 | 1.00 | ||||
CNRM-CM5 | 0.98 | 0.99 | 0.98 | 1.00 | 0.92 | 0.99 | 0.81 | 0.98 | ||||
CSIRO-Mk3-6-0 | 0.99 | 0.99 | 0.99 | 0.99 | 0.96 | 1.00 | 0.91 | 0.99 | ||||
EC-EARTH | 0.98 | 0.99 | 0.98 | 1.00 | 0.98 | 1.00 | 0.92 | 1.00 | ||||
HadGEM2-ES | 0.97 | 0.97 | 0.96 | 1.00 | 0.91 | 0.99 | 0.82 | 1.00 | ||||
IPSL-CM5A-LR | 0.97 | 0.98 | 0.96 | 0.99 | 0.33 | 0.90 | 0.99 | 0.73 | 0.99 | |||
IPSL-CM5A-MR | 0.98 | 0.32 | 0.97 | 1.00 | 0.32 | 0.93 | 0.99 | 0.77 | 0.98 | |||
MIROC4h | 0.97 | 0.99 | 0.98 | 1.00 | 0.99 | 0.97 | 0.97 | 0.99 | ||||
MIROC5 | 0.92 | 1.00 | 0.89 | 1.00 | 0.89 | 0.99 | 0.83 | 0.98 | ||||
MIROC-ESM | 0.97 | 0.98 | 0.93 | 0.99 | 0.98 | 1.00 | 0.94 | 0.99 | ||||
MPI-ESM-LR | 0.99 | 0.97 | 0.99 | 1.00 | 0.97 | 0.99 | 0.98 | 0.99 | 0.38 | |||
MPI-ESM-MR | 0.98 | 0.96 | 0.99 | 1.00 | 0.25 | 0.98 | 0.99 | 0.99 | 0.99 | |||
MRI-CGCM3 | 1.00 | 0.88 | 0.99 | 1.00 | 0.99 | 0.99 | 0.99 | 1.00 |
References
- Fink, A.H.; Engel, T.; Ermert, V.; van der Linden, R.; Schneidewind, M.; Redl, R.; Afiesimama, E.; Thiaw, W.M.; Yorke, C.; Evans, M.; et al. Mean Climate and Seasonal Cycle. In Meteorology of Tropical West Africa; Parker, D.J., Diop-Kane, M., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 1–39. [Google Scholar] [CrossRef]
- Dunning, C.M.; Black, E.C.L.; Allan, R.P. The onset and cessation of seasonal rainfall over Africa: Onset and cessation of african rainfall. J. Geophys. Res. Atmos. 2016, 121, 11405–11424. [Google Scholar] [CrossRef] [Green Version]
- Liebmann, B.; Bladé, I.; Kiladis, G.N.; Carvalho, L.M.V.; Senay, G.B.; Allured, D.; Leroux, S.; Funk, C. Seasonality of African Precipitation from 1996 to 2009. J. Clim. 2012, 25, 4304–4322. [Google Scholar] [CrossRef]
- Hulme, M. Rainfall changes in Africa: 1931–1960 to 1961–1990. Int. J. Clim. 1992, 12, 685–699. [Google Scholar] [CrossRef]
- Rowell, D.P. Reply to comments by Y. C. Sud and W. K.-M. Lau on ‘Variability of summer rainfall over tropical north Africa (1906–92): Observations and modelling’ by D. P. Rowell, C. K. Folland, K. Maskell and M. N. Ward (April A, 1995, 121, 669–704) Further analysis of simulated interdecadal and interannual variability of summer rainfall over tropical north Africa. Q. J. R. Meteorol. Soc. 1996, 122, 1007–1013. [Google Scholar] [CrossRef]
- Panthou, G.; Vischel, T.; Lebel, T. Recent trends in the regime of extreme rainfall in the Central Sahel. Int. J. Clim. 2014, 34, 3998–4006. [Google Scholar] [CrossRef]
- Mouhamed, L.; Traore, S.B.; Alhassane, A.; Sarr, B. Evolution of some observed climate extremes in the West African Sahel. Weather Clim. Extremes 2013, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Zipser, E.J.; Cecil, D.J.; Liu, C.; Nesbitt, S.W.; Yorty, D.P. Where are the most intense thunderstorms on earth? Bull. Am. Meteorol. Soc. 2006, 87, 1057–1072. [Google Scholar] [CrossRef] [Green Version]
- Lebel, T.; Ali, A. Recent trends in the Central and Western Sahel rainfall regime (1990–2007). J. Hydrol. 2009, 375, 52–64. [Google Scholar] [CrossRef]
- Mathon, V.; Laurent, H.; Lebel, T. Mesoscale Convective System Rainfall in the Sahel. J. Appl. Meteorol. 2002, 41, 1081–1092. [Google Scholar] [CrossRef]
- Frappart, F.; Hiernaux, P.; Guichard, F.; Mougin, E.; Kergoat, L.; Arjounin, M.; Lavenu, F.; Koité, M.; Paturel, J.E.; Lebel, T. Rainfall regime across the Sahel band in the Gourma region, Mali. J. Hydrol. 2009, 375, 128–142. [Google Scholar] [CrossRef] [Green Version]
- Salack, S.; Muller, B.; Gaye, A.T.; Hourdin, F.; Cisse, N. Multi-scale analyses of dry spells across Niger and Senegal. Sécheresse 2012, 23, 3–13. [Google Scholar] [CrossRef]
- Sivakumar, M.V.K. Empirical Analysis of Dry Spells for Agricultural Applications in West Africa. J. Clim. 1992, 5, 532–539. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhou, T.; Zou, L.; Zhang, L.; Chen, X. Reduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regions. Nat. Commun. 2018, 9, 3153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanogo, S.; Fink, A.H.; Omotosho, J.A.; Ba, A.; Redl, R.; Ermert, V. Spatio-temporal characteristics of the recent rainfall recovery in West Africa. Int. J. Clim. 2015, 35, 4589–4605. [Google Scholar] [CrossRef]
- Taylor, C.M.; Belušić, D.; Guichard, F.; Parker, D.J.; Vischel, T.; Bock, O.; Harris, P.P.; Janicot, S.; Klein, C.; Panthou, G. Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature 2017, 544, 475–478. [Google Scholar] [CrossRef] [Green Version]
- Descroix, L.; Guichard, F.; Grippa, M.; Lambert, L.A.; Panthou, G.; Mahé, G.; Gal, L.; Dardel, C.; Quantin, G.; Kergoat, L.; et al. Evolution of Surface Hydrology in the Sahelo-Sudanian Strip: An Updated Review. Water 2018, 10, 748. [Google Scholar] [CrossRef] [Green Version]
- Molua, E.L. Turning up the heat on African agriculture: The impact of climate change on Cameroon’s agriculture. Afr. J. Agric. Resour. Econ. 2008, 2, 45–64. [Google Scholar]
- New, M.; Hewitson, B.; Stephenson, D.B.; Tsiga, A.; Kruger, A.; Manhique, A.; Gomez, B.; Coelho, C.A.S.; Masisi, D.N.; Kululanga, E.; et al. Evidence of trends in daily climate extremes over southern and west Africa. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate Trends and Global Crop Production Since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [Green Version]
- Anyamba, A.; Small, J.L.; Britch, S.C.; Tucker, C.J.; Pak, E.W.; Reynolds, C.A.; Crutchfield, J.; Linthicum, K.J. Recent Weather Extremes and Impacts on Agricultural Production and Vector-Borne Disease Outbreak Patterns. PLoS ONE 2014, 9, e92538. [Google Scholar] [CrossRef]
- Sané, O.D.; Gaye, A.T.; Diakhaté, M.; Aziadekey, M. Social Vulnerability Assessment to Flood in Medina Gounass Dakar. J. Geogr. Inf. Syst. 2015, 07, 415. [Google Scholar] [CrossRef] [Green Version]
- Sané, O.D.; Gaye, A.T.; Diakhaté, M.; Aziadekey, M. Critical Factors of Vulnerability That Enable Medina Gounass (Dakar/Senegal) to Adapt against Seasonal Flood Events. J. Geogr. Inf. Syst. 2016, 8, 457–469. [Google Scholar] [CrossRef] [Green Version]
- Groupe d’experts intergouvernemental sur l’évolution du climat.; Pachauri, R.K.; Meyer, L.A. Changements climatiques 2014: rapport de synthèse: Contribution des Groupes de travail I, II et III au cinquième Rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat; GIEC: Genève, Switzerland, 2015; OCLC: 948289514. [Google Scholar]
- Biasutti, M.; Sobel, A.H. Delayed Sahel rainfall and global seasonal cycle in a warmer climate. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Allan, R.P.; Soden, B.J. Atmospheric Warming and the Amplification of Precipitation Extremes. Science 2008, 321, 1481–1484. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; Sylla, M.B.; Bi, X.; Elguindi, N.; Diro, G.T.; Nair, V.; Giuliani, G.; et al. RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim. Res. 2012, 52, 7–29. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Coppola, E.; Raffaele, F.; Diro, G.T.; Fuentes-Franco, R.; Giuliani, G.; Mamgain, A.; Llopart, M.P.; Mariotti, L.; Torma, C. Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections. Clim. Chang. 2014, 125, 39–51. [Google Scholar] [CrossRef]
- Asrar, G.R.; Hurrell, J.W. (Eds.) Climate Science for Serving Society; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Roehrig, R. Intraseasonal Variability of the West African Monsoon: Characterization and Modelling. Ph.D. Thesis, Université Paris-Est, Champs-sur-Marne, France, 2010. [Google Scholar]
- Monerie, P.A.; Sanchez-Gomez, E.; Boé, J. On the range of future Sahel precipitation projections and the selection of a sub-sample of CMIP5 models for impact studies. Clim. Dyn. 2017, 48, 2751–2770. [Google Scholar] [CrossRef]
- Vizy, E.K.; Cook, K.H.; Crétat, J.; Neupane, N. Projections of a Wetter Sahel in the Twenty-First Century from Global and Regional Models. J. Clim. 2013, 26, 4664–4687. [Google Scholar] [CrossRef]
- Zebaze, S.; Jain, S.; Salunke, P.; Shafiq, S.; Mishra, S.K. Assessment of CMIP5 multimodel mean for the historical climate of Africa. Atmos. Sci. Lett. 2019, 20, e926. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Roehrig, R.; Bouniol, D.; Guichard, F.; Hourdin, F.; Redelsperger, J.L. The Present and Future of the West African Monsoon: A Process-Oriented Assessment of CMIP5 Simulations along the AMMA Transect. J. Clim. 2013, 26, 6471–6505. [Google Scholar] [CrossRef]
- Maidment, R.I.; Grimes, D.; Allan, R.P.; Tarnavsky, E.; Stringer, M.; Hewison, T.; Roebeling, R.; Black, E. The 30 year TAMSAT African Rainfall Climatology And Time series (TARCAT) data set. J. Geophys. Res. Atmos. 2014, 119, 10619–10644. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J. Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations. J. Hydrometeorol. 2001, 2, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Sylla, M.B.; Giorgi, F.; Pal, J.S.; Gibba, P.; Kebe, I.; Nikiema, M. Projected Changes in the Annual Cycle of High-Intensity Precipitation Events over West Africa for the Late Twenty-First Century. J. Clim. 2015, 28, 6475–6488. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Giannini, A.; Saravanan, R.; Chang, P. Oceanic Forcing of Sahel Rainfall on Interannual to Interdecadal Time Scales. Science 2003, 302, 1027–1030. [Google Scholar] [CrossRef] [Green Version]
- Janicot, S.; Caniaux, G.; Chauvin, F.; Coëtlogon, G.d.; Fontaine, B.; Hall, N.; Kiladis, G.; Lafore, J.P.; Lavaysse, C.; Lavender, S.L.; et al. Intraseasonal variability of the West African monsoon. Atmos. Sci. Lett. 2011, 12, 58–66. [Google Scholar] [CrossRef] [Green Version]
- d’Orgeval, T.; Polcher, J.; Li, L. Uncertainties in modelling future hydrological change over West Africa. Clim. Dyn. 2006, 26, 93–108. [Google Scholar] [CrossRef]
- Adejuwon, J.O.; Odekunle, T.O. Variability and the Severity of the “Little Dry Season” in Southwestern Nigeria. J. Clim. 2006, 19, 483–493. [Google Scholar] [CrossRef]
- Stephens, G.L.; L’Ecuyer, T.; Forbes, R.; Gettelmen, A.; Golaz, J.C.; Bodas-Salcedo, A.; Suzuki, K.; Gabriel, P.; Haynes, J. Dreary state of precipitation in global models. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Guichard, F.; Petch, J.; Redelsperger, J.L.; Bechtold, P.; Chaboureau, J.P.; Cheinet, S.; Grabowski, W.; Grenier, H.; Jones, C.; Köhler, M.; et al. Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Q. J. R. Meteorol. Soc. 2004, 130, 3139–3172. [Google Scholar] [CrossRef]
- Thorncroft, C.D.; Nguyen, H.; Zhang, C.; Peyrillé, P. Annual cycle of the West African monsoon: Regional circulations and associated water vapour transport. Q. J. R. Meteorol. Soc. 2011, 137, 129–147. [Google Scholar] [CrossRef]
- Fitzpatrick, R.G.J.; Bain, C.L.; Knippertz, P.; Marsham, J.H.; Parker, D.J. The West African Monsoon Onset: A Concise Comparison of Definitions. J. Clim. 2015, 28, 8673–8694. [Google Scholar] [CrossRef]
- Bombardi, R.J.; Moron, V.; Goodnight, J.S. Detection, variability, and predictability of monsoon onset and withdrawal dates: A review. Int. J. Clim. 2019. [Google Scholar] [CrossRef]
- Marteau, R.; Moron, V.; Philippon, N. Spatial Coherence of Monsoon Onset over Western and Central Sahel (1950–2000). J. Clim. 2009, 22, 1313–1324. [Google Scholar] [CrossRef] [Green Version]
- Seth, A.; Rauscher, S.A.; Biasutti, M.; Giannini, A.; Camargo, S.J.; Rojas, M. CMIP5 Projected Changes in the Annual Cycle of Precipitation in Monsoon Regions. J. Clim. 2013, 26, 7328–7351. [Google Scholar] [CrossRef]
- Diallo, F.B.; Hourdin, F.; Rio, C.; Traore, A.K.; Mellul, L.; Guichard, F.; Kergoat, L. The Surface Energy Budget Computed at the Grid-Scale of a Climate Model Challenged by Station Data in West Africa. J. Adv. Model. Earth Syst. 2017, 9, 2710–2738. [Google Scholar] [CrossRef] [Green Version]
- Dixon, R.D.; Daloz, A.S.; Vimont, D.J.; Biasutti, M. Saharan Heat Low Biases in CMIP5 Models. J. Clim. 2016, 30, 2867–2884. [Google Scholar] [CrossRef]
- Dixon, R.D.; Vimont, D.J.; Daloz, A.S. The relationship between tropical precipitation biases and the Saharan heat low bias in CMIP5 models. Clim. Dyn. 2018, 50, 3729–3744. [Google Scholar] [CrossRef]
- Monerie, P.A.; Roucou, P.; Fontaine, B. Mid-century effects of Climate Change on African monsoon dynamics using the A1B emission scenario. Int. J. Clim. 2013, 33, 881–896. [Google Scholar] [CrossRef]
- Biasutti, M.; Voigt, A.; Boos, W.R.; Braconnot, P.; Hargreaves, J.C.; Harrison, S.P.; Kang, S.M.; Mapes, B.E.; Scheff, J.; Schumacher, C.; et al. Global energetics and local physics as drivers of past, present and future monsoons. Nat. Geosci. 2018, 11, 392–400. [Google Scholar] [CrossRef]
Modelling Center | Institution | Model Name | Resolution |
---|---|---|---|
Beijing Climate Center, China Meteorological Administration | BCC | BCC-CSM1-1-M | 1.125 × 1.125 |
Canadian Centre for Climate Modelling and Analysis | CCCma | CanESM2 | 2.79 × 2.81 |
Centre National de Recherches Météorologiques/Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique | CNRM-CERFACS | CNRM-CM5 | 1.40 × 1.40 |
National Center for Atmospheric Research | NCAR | CCSM4 | 0.94 × 1.25 |
Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland Climate Change Centre of Excellence | CSIRO-QCCCE | CSIRO-Mk3.6.0 | 1.86 × 1.87 |
EC-EARTH consortium | EC-EARTH | EC-EARTH | 1.12 × 1.12 |
Met Office Hadley Centre(additional HadGEM2-ES realizations contributed by Instituto Nacional de Pesquisas Espaciais) | MOHC | HadGEM2-ES | 1.25 × 1.85 |
Institut Pierre-Simon Laplace | IPSL | IPSL-CM5A-LR | 1.89 × 3.75 |
Institut Pierre-Simon Laplace | IPSL | IPSL-CM5A-MR | 1.27 × 2.50 |
Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute(The University of Tokyo), and National Institute for Environmental Studies | MIROC | MIROC-ESM | 2.79 × 2.81 |
Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | MIROC | MIROC4h | 0.56 × 1.41 |
Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | MIROC | MIROC5 | 1.40 × 1.41 |
Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) | MPI-M | MPI-ESM-LR | 1.86 × 1.87 |
Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) | MPI-M | MPI-ESM-MR | 1.86 × 1.87 |
Meteorological Research Institute | MRI | MRI-CGCM3 | 1.12 × 1.12 |
Sahel | Guinean Region | West Africa | ||||
---|---|---|---|---|---|---|
CHIRPS | 667 | 1488 | 837 | |||
GPCP | +75 | (+11%) | (%) | +48 | (+6%) | |
TRMM | +33 | (+5%) | (%) | +9 | (+1%) | |
BCC-CSM1-1-M | −426 | (%) | (%) | (%) | ||
CanESM2 | (%) | +87 | (+6%) | 0 | (0%) | |
CCSM4 | −64 | (%) | +105 | (+7%) | (%) | |
CNRM-CM5 | +25 | (+4%) | +411 | (+28%) | +105 | (+13%) |
CSIRO-Mk3-6-0 | +590 | (+88%) | +285 | (+19%) | +527 | (+63%) |
EC-EARTH | +194 | (+29%) | +114 | (+8%) | +177 | (+21%) |
HadGEM2-ES | (%) | (%) | (%) | |||
IPSL-CM5A-LR | (%) | +83 | (+6%) | (%) | ||
IPSL-CM5A-MR | (%) | (%) | (%) | |||
MIROC-ESM | (%) | +502 | (+34%) | +65 | (+8%) | |
MIROC4h | +227 | (+34%) | +554 | (+37%) | +295 | (+35%) |
MIROC5 | +498 | (+75%) | +943 | (+63%) | +590 | (+70%) |
MPI-ESM-LR | (-10%) | +98 | (+7%) | (4%) | ||
MPI-ESM-MR | (%) | +76 | (+5%) | +9 | (+1%) | |
MRI-CGCM3 | (%) | (%) | (%) | |||
ensmean | (%) | +153 | (+10%) | +8 | (+1%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sow, M.; Diakhaté, M.; Dixon, R.D.; Guichard, F.; Dieng, D.; Gaye, A.T. Uncertainties in the Annual Cycle of Rainfall Characteristics over West Africa in CMIP5 Models. Atmosphere 2020, 11, 216. https://doi.org/10.3390/atmos11020216
Sow M, Diakhaté M, Dixon RD, Guichard F, Dieng D, Gaye AT. Uncertainties in the Annual Cycle of Rainfall Characteristics over West Africa in CMIP5 Models. Atmosphere. 2020; 11(2):216. https://doi.org/10.3390/atmos11020216
Chicago/Turabian StyleSow, Magatte, Moussa Diakhaté, Ross D. Dixon, Françoise Guichard, Diarra Dieng, and Amadou T. Gaye. 2020. "Uncertainties in the Annual Cycle of Rainfall Characteristics over West Africa in CMIP5 Models" Atmosphere 11, no. 2: 216. https://doi.org/10.3390/atmos11020216
APA StyleSow, M., Diakhaté, M., Dixon, R. D., Guichard, F., Dieng, D., & Gaye, A. T. (2020). Uncertainties in the Annual Cycle of Rainfall Characteristics over West Africa in CMIP5 Models. Atmosphere, 11(2), 216. https://doi.org/10.3390/atmos11020216