On Aerosol Liquid Water and Sulfate Associations: The Potential for Fine Particulate Matter Biases
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fann, N.; Lamson, A.D.; Anenberg, S.C.; Wesson, K.; Risley, D.; Hubbell, B.J. Estimating the National Public Health Burden Associated with Exposure to Ambient PM2.5 and Ozone. Risk Anal. 2012, 32, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A.; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dockery, D.W.; Cunningham, J.; Damokosh, A.I.; Neas, L.M.; Spengler, J.D.; Koutrakis, P.; Ware, J.H.; Raizenne, M.; Speizer, F.E. Health effects of acid aerosols on North American children: Respiratory symptoms. Environ. Health Perspect. 1996, 104, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Raizenne, M.; Neas, L.M.; Damokosh, A.I.; Dockery, D.W.; Spengler, J.D.; Koutrakis, P.; Ware, J.H.; Speizer, F.E. Health effects of acid aerosols on North American children: Pulmonary function. Environ. Health Perspect. 1996, 104, 506–514. [Google Scholar] [CrossRef]
- Dockery, D.W.; Pope, C.A.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G.; Speizer, F.E.N. An Association between Air Pollution and Mortality in Six U.S. Cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [Green Version]
- Reiss, R.; Anderson, E.L.; Cross, C.E.; Hidy, G.; Hoel, D.; McClellan, R.; Moolgavkar, S. Evidence of health impacts of sulfate- and nitrate-containing particles in ambient air. Inhal. Toxicol. 2007, 19, 419–449. [Google Scholar] [CrossRef]
- Schlesinger, R.B. The health impact of common inorganic components of fine particulate matter (PM2.5) in ambient air: A critical review. Inhal. Toxicol. 2007, 19, 811–832. [Google Scholar] [CrossRef]
- Fang, T.; Guo, H.Y.; Zeng, L.H.; Verma, V.; Nenes, A.; Weber, R.J. Highly Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity. Environ. Sci. Technol. 2017, 51, 2611–2620. [Google Scholar] [CrossRef]
- Laden, F.; Schwartz, J.; Speizer, F.E.; Dockery, D.W. Comments on the updated Harvard Six Cities study. Am. J. Respir. Crit. Care Med. 2006, 174, 722–724. [Google Scholar] [CrossRef]
- Baker, K.; Scheff, P. Assessing meteorological variable and process relationships to modeled PM2.5 ammonium nitrate and ammonium sulfate in the central United States. J. Appl. Meteorol. Climatol. 2008, 47, 2395–2404. [Google Scholar] [CrossRef]
- Landis, M.S.; Norris, G.A.; Williams, R.W.; Weinstein, J.P. Personal exposures to PM2.5 mass and trace elements in Baltimore, MD, USA. Atmos. Environ. 2001, 35, 6511–6524. [Google Scholar] [CrossRef]
- Goldman, G.T.; Mulholland, J.A.; Russell, A.G.; Srivastava, A.; Strickland, M.J.; Klein, M.; Waller, L.A.; Tolbert, P.E.; Edgerton, E.S. Ambient Air Pollutant Measurement Error: Characterization and Impacts in a Time-Series Epidemiologic Study in Atlanta. Environ. Sci. Technol. 2010, 44, 7692–7698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlton, A.G.; Pye, H.O.T.; Baker, K.R.; Hennigan, C.J. Additional benefits of federal air-quality rules: Model estiamtes of controllable biogenic secondary organic aerosol. Environ. Sci. Technol. 2018, 52, 9254–9265. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.K.V.; Zhang, Q.; Jimenez, J.L.; Pike, M.; Carlton, A.G. Liquid Water: Ubiquitous Contributor to Aerosol Mass. Environ. Sci. Technol. Lett. 2016, 3, 257–263. [Google Scholar] [CrossRef]
- Noble, C.A.; Vanderpool, R.W.; Peters, T.M.; McElroy, F.F.; Gemmill, D.B.; Wiener, R.W. Federal reference and equivalent methods for measuring fine particulate matter. Aerosol Sci. Technol. 2001, 34, 457–464. [Google Scholar] [CrossRef]
- Jimenez, J.L.; Jayne, J.T.; Shi, Q.; Kolb, C.E.; Worsnop, D.R.; Yourshaw, I.; Seinfeld, J.H.; Flagan, R.C.; Zhang, X.F.; Smith, K.A.; et al. Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Carlton, A.G.; Turpin, B.J. Particle partitioning potential of organic compounds is highest in the Eastern US and driven by anthropogenic water. Atmos. Chem. Phys. 2013, 13, 10203–10214. [Google Scholar] [CrossRef] [Green Version]
- Faust, J.A.; Wong, J.P.S.; Lee, A.K.Y.; Abbatt, J.P.D. Role of Aerosol Liquid Water in Secondary Organic Aerosol Formation from Volatile Organic Compounds. Environ. Sci. Technol. 2017, 51, 1405–1413. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Coggon, M.M.; Bates, K.H.; Zhang, X.; Schwantes, R.H.; Schilling, K.A.; Loza, C.L.; Flagan, R.C.; Wennberg, P.O.; Seinfeld, J.H. Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds. Atmos. Chem. Phys. 2014, 14, 3497–3510. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.H.; Arashiro, M.; Clapp, P.W.; Cui, T.Q.; Sexton, K.G.; Vizuete, W.; Gold, A.; Jaspers, I.; Fry, R.C.; Surratt, J.D. Gene Expression Profiling in Human Lung Cells Exposed to Isoprene-Derived Secondary Organic Aerosol. Environ. Sci. Technol. 2017, 51, 8166–8175. [Google Scholar] [CrossRef] [PubMed]
- Arashiro, M.; Lin, Y.H.; Zhang, Z.F.; Sexton, K.G.; Gold, A.; Jaspers, I.; Fry, R.C.; Surratt, J.D. Effect of secondary organic aerosol from isoprene-derived hydroxyhydroperoxides on the expression of oxidative stress response genes in human bronchial epithelial cells. Environ. Sci. Process. Impacts 2018, 20, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Fang, T.; Xu, L.; Peltier, R.E.; Russell, A.G.; Ng, N.L.; Weber, R.J. Organic Aerosols Associated with the Generation of Reactive Oxygen Species (ROS) by Water-Soluble PM2.5. Environ. Sci. Technol. 2015, 49, 4646–4656. [Google Scholar] [CrossRef] [PubMed]
- Saffari, A.; Daher, N.; Shafer, M.M.; Schauer, J.J.; Sioutas, C. Global Perspective on the Oxidative Potential of Airborne Particulate Matter: A Synthesis of Research Findings. Environ. Sci. Technol. 2014, 48, 7576–7583. [Google Scholar] [CrossRef] [PubMed]
- Fang, T.; Guo, H.; Verma, V.; Peltier, R.E.; Weber, R.J. PM2.5 water-soluble elements in the southeastern United States: Automated analytical method development, spatiotemporal distributions, source apportionment, and implications for heath studies. Atmos. Chem. Phys. 2015, 15, 11667–11682. [Google Scholar] [CrossRef] [Green Version]
- Sisler, J.; Malm, W. The relative importance of soluble aerosols to spacial and seasonal trends of impaired visibility in the United States. Atmos. Environ. 1994, 28, 851–862. [Google Scholar] [CrossRef]
- Lippmann, M.; Ito, K.; Nadas, A.; Burnett, R.T. Association of particulate matter components with daily mortality and morbidity in urban populations. Res. Rep. Health Eff. Inst. 2000, 95, 5–72, discussion 73–82. [Google Scholar]
- Tsai, F.C.; Apte, M.G.; Daisey, J.M. An exploratory analysis of the relationship between mortality and the chemical composition of airborne particulate matter. Inhal. Toxicol. 2000, 12, 121–135. [Google Scholar] [CrossRef]
- Fairley, D. Daily mortality and air pollution in Santa Clara County, California: 1989–1996. Environ. Health Perspect. 1999, 107, 637–641. [Google Scholar] [CrossRef]
- Mar, T.F.; Norris, G.A.; Koenig, J.Q.; Larson, T.V. Associations between air pollution and mortality in Phoenix, 1995–1997. Environ. Health Perspect. 2000, 108, 347–353. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Quality Assurance Guidance Document 2.12; Office of Air Quality Planning And Standards Air Quality Assessment Division: Research Triangle Park, NC, USA, 2016.
- Eatough, D.J.; Wadsworth, A.; Eatough, D.A.; Crawford, J.W.; Hansen, L.D.; Lewis, E.A. A multiple-system, multichannel diffusion denuder sampler for the determination of fine particulate organic material in the atmosphere. Atmos. Environ. 1993, 27, 1213–1219. [Google Scholar] [CrossRef]
- Turpin, B.J.; Huntzicker, J.J.; Hering, S.V. Investigation of organic aerosol sampling artifacts in the los angeles basin. Atmos. Environ. 1994, 28, 3061–3071. [Google Scholar]
- El-Sayed, M.M.H.; Amenumey, D.; Hennigan, C.J. Drying-Induced Evaporation of Secondary Organic Aerosol during Summer. Environ. Sci. Technol. 2016, 50, 3626–3633. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Z.; Hecobian, A.; Zheng, M.; Frank, N.H.; Edgerton, E.S.; Weber, R. Spatial and seasonal variations of fine particle water-soluble organic carbon (WSOC) over the southeastern United States: Implications for secondary organic aerosol formation. J. Atmos. Chem. Phys. 2012, 12, 6593–6607. [Google Scholar] [CrossRef] [Green Version]
- Pöschl, U.; Shiraiwa, M. Chemical Reviews; American Chemical Society: Washington, DC, USA, 2015; pp. 4440–4475. [Google Scholar]
- Christiansen, A.E.; Ghate, V.P.; Carlton, A.G. Aerosol Optical Thickness: Organic Composition, Associated Particle Water, and Aloft Extinction. ACS Earth Space Chem. 2019, 3, 403–412. [Google Scholar] [CrossRef]
- Van Loy, M.; Bahadori, T.; Wyzga, R.; Edgerton, B.H.E. The aerosol research and inhalation epidemiology study (ARIES): PM2.5 mass and aerosol component concentrations and sampler intercomparisons. J. Air Waste Manag. Assoc. 2000, 50, 1446–1458. [Google Scholar]
- National Park Service. Improve—Interagency Monitoring of Protected Visual Environments. 2000. Available online: http://vista.cira.colostate.edu/improve/ (accessed on 13 July 2015).
- Nguyen, T.K.V.; Capps, S.L.; Carlton, A.G. Decreasing Aerosol Water Is Consistent with OC Trends in the Southeast US. Environ. Sci. Technol. 2015, 49, 7843–7850. [Google Scholar] [CrossRef]
- IMPROVE Public Archive. Available online: http://views.cira.colostate.edu/fed/DataWizard/Default.aspx (accessed on 13 July 2015).
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jovic, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 2006, 87, 343. [Google Scholar] [CrossRef] [Green Version]
- Fountoukis, C.; Nenes, A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-Nh4+-Na+-SO42−-NO3−-Cl−-H2O aerosols. Atmos. Chem. Phys. 2007, 7, 4639–4659. [Google Scholar] [CrossRef] [Green Version]
- Moravek, A.; Murphy, J.G.; Hrdina, A.; Lin, J.C.; Pennell, C.; Franchin, A.; Middlebrook, A.M.; Fibiger, D.L.; Womack, C.C.; McDuffie, E.E.; et al. Wintertime spatial distribution of ammonia and its emission sources in the Great Salt Lake region. Atmos. Chem. Phys. 2019, 19, 15691–15709. [Google Scholar] [CrossRef] [Green Version]
- Pye, H.O.T.; Nenes, A.; Alexander, B.; Ault, A.P.; Barth, M.C.; Clegg, S.L.; Collett, J.L.; Fahey, K.M.; Hennigan, C.J.; Herrmann, H.; et al. The Acidity of Atmospheric Particles and Clouds. Atmos. Chem. Phys. Discuss. 2019. [Google Scholar] [CrossRef]
- Petters, M.D.; Kreidenweis, S.M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 2007, 7, 1961–1971. [Google Scholar]
- Chan, M.N.; Choi, M.Y.; Ng, N.L.; Chan, C.K. Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: Amino acids and biomass burning derived organic species. Environ. Sci. Technol. 2005, 39, 1555–1562. [Google Scholar] [CrossRef] [PubMed]
- Burnett, R.T.; Stieb, D.; Brook, J.R.; Cakmak, S.; Dales, R.; Raizenne, M.; Vincent, R.; Dann, T. Associations between short-term changes in nitrogen dioxide and mortality in Canadian cities. Arch. Environ. Health 2004, 59, 228–236. [Google Scholar]
- Nguyen, T.K.V.; Ghate, V.P.; Carlton, A.G. Reconciling satellite aerosol optical thickness and surface fine particle mass through aerosol liquid water. Geophys. Res. Lett. 2016, 43, 11903–11912. [Google Scholar] [CrossRef]
- Farkas, C.M.; Moeller, M.D.; Felder, F.A.; Baker, K.R.; Rodgers, M.; Carlton, A.G. Temporalization of Peak Electric Generation Particulate Matter Emissions during High Energy Demand Days. Environ. Sci. Technol. 2015, 49, 4696–4704. [Google Scholar] [CrossRef]
- Farkas, C.M.; Moeller, M.D.; Felder, F.A.; Henderson, B.H.; Carlton, A.G. High Electricity Demand in the Northeast US: PJM Reliability Network and Peaking Unit Impacts on Air Quality. Environ. Sci. Technol. 2016, 50, 8375–8384. [Google Scholar] [CrossRef]
- El-Sayed, M.M.H.; Ortiz-Montalvo, D.L.; Hennigan, C.J. The effects of isoprene and NOx on secondary organic aerosols formed through reversible and irreversible uptake to aerosol water. Atmos. Chem. Phys. 2018, 18, 1171–1184. [Google Scholar] [CrossRef] [Green Version]
- Youn, J.-S.; Wang, Z.; Wonaschütz, A.; Arellano, A.; Betterton, E.A.; Sorooshian, A. Evidence of aqueous secondary organic aerosol formation from biogenic emissions in the North American Sonoran Desert. Geophys. Res. Lett. 2013, 40, 3468–3472. [Google Scholar] [CrossRef] [Green Version]
- Carlton, A.G.; Gouw, J.A.d.; Jimenez, J.L.; Ambrose, J.L.; Attwood, A.R.; Brown, S.; Baker, K.R.; Brock, C.; Cohen, R.C.; Edgerton, S.; et al. Synthesis of the Southeast Atmosphere Studies: Investigating fundamental atmospheric chemistry questions. Bull. Am. Meteorol. Soc. 2018, 99, 547–5567. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Martin, R.V. Decadal Changes in Seasonal Variation of Atmospheric Haze over the Eastern United States: Connections with Anthropogenic Emissions and Implications for Aerosol Composition. Environ. Sci. Technol. Lett. 2018, 5, 413–418. [Google Scholar] [CrossRef]
City | Sulfate (μg m−3) | Nitrate (μg m−3) | Ambient Water (μg m−3) | Lab Water (μg m−3) | Relative Humidity (%) | Ambient Particle and Mass (μg m−3) | Lab Particle and Mass (μg m−3) |
---|---|---|---|---|---|---|---|
Martha’s Vineyard, MA | 2.57 | 0.55 | 17.5 | 2.57 | 85.8 | 21.6 | 6.66 |
Brigantine, NJ | 3.72 | 0.87 | 11.7 | 3.71 | 79.7 | 17.9 | 9.90 |
Washington D.C. | 4.84 | 1.57 | 16.0 | 4.82 | 79.7 | 24.9 | 13.7 |
Detroit, MI | 3.42 | 2.60 | 9.78 | 3.40 | 76.5 | 18.4 | 12.1 |
Phoenix, AZ | 1.02 | 1.05 | 0.95 | 1.02 | 31.1 | 5.92 | 5.99 |
Death Valley, CA | 0.84 | 0.23 | 0.66 | 0.84 | 28.1 | 2.28 | 2.46 |
Lava Beds, CA | 0.35 | 0.12 | 0.56 | 0.35 | 60.7 | 2.01 | 1.89 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babila, J.E.; Carlton, A.G.; Hennigan, C.J.; Ghate, V.P. On Aerosol Liquid Water and Sulfate Associations: The Potential for Fine Particulate Matter Biases. Atmosphere 2020, 11, 194. https://doi.org/10.3390/atmos11020194
Babila JE, Carlton AG, Hennigan CJ, Ghate VP. On Aerosol Liquid Water and Sulfate Associations: The Potential for Fine Particulate Matter Biases. Atmosphere. 2020; 11(2):194. https://doi.org/10.3390/atmos11020194
Chicago/Turabian StyleBabila, Jonathon E., Annmarie G. Carlton, Christopher J. Hennigan, and Virendra P. Ghate. 2020. "On Aerosol Liquid Water and Sulfate Associations: The Potential for Fine Particulate Matter Biases" Atmosphere 11, no. 2: 194. https://doi.org/10.3390/atmos11020194
APA StyleBabila, J. E., Carlton, A. G., Hennigan, C. J., & Ghate, V. P. (2020). On Aerosol Liquid Water and Sulfate Associations: The Potential for Fine Particulate Matter Biases. Atmosphere, 11(2), 194. https://doi.org/10.3390/atmos11020194