An Observational Study of the Symmetric Boundary Layer Structure and Tropical Cyclone Intensity
Abstract
:1. Introduction
2. Data and Methodology
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Braun, S.A.; Tao, W.K. Sensitivity of High-Resolution Simulations of Hurricane Bob (1991) to Planetary Boundary Layer Parameterizations. Mon. Weather. Rev. 2000, 128, 3941–3961. [Google Scholar] [CrossRef] [Green Version]
- Nolan, D.S.; Zhang, J.A.; Stern, D.P. Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ data and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and outer-core boundary layer structure. Mon. Weather Rev. 2009, 137, 3651–3674. [Google Scholar] [CrossRef]
- Smith, R.K.; Thomsen, G.L. Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model. Q. J. R. Meteorol. Soc. 2010, 136, 1671–1685. [Google Scholar] [CrossRef]
- Kepert, J.D. Choosing a Boundary Layer Parameterization for Tropical Cyclone Modeling. Mon. Weather Rev. 2012, 140, 1427–1445. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.; Menelaou, K.; Zhu, Z. Impact of sub-grid scale vertical turbulent mixing on eyewall asymmetric structures and mesovortices of hurricanes. Q. J. R. Meteorol. Soc. 2013, 140, 416–438. [Google Scholar] [CrossRef]
- Montgomery, M.; Smith, R. Paradigms for tropical cyclone intensification. J. South. Hemisph. Earth Syst. Sci. 2014, 64, 37–66. [Google Scholar] [CrossRef]
- Zhang, J.A.; Rogers, R.F.; Tallapragada, V. Impact of Parameterized Boundary Layer Structure on Tropical Cyclone Rapid Intensification Forecasts in HWRF. Mon. Weather Rev. 2017, 145, 1413–1426. [Google Scholar] [CrossRef]
- Zhang, J.A.; Rogers, R.F. Effects of Parameterized Boundary Layer Structure on Hurricane Rapid Intensification in Shear. Mon. Weather Rev. 2019, 147, 853–871. [Google Scholar] [CrossRef]
- Hock, T.F.; Franklin, J.L. The NCAR GPS Dropwindsonde. Bull. Am. Meteorol. Soc. 1999, 80, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Franklin, J.L.; Black, M.L.; Valde, K. GPS Dropwindsonde Wind Profiles in Hurricanes and Their Operational Implications. Weather Forecast. 2003, 18, 32–44. [Google Scholar] [CrossRef]
- Zhang, J.A.; Rogers, R.F.; Nolan, D.S.; Marks, F.D., Jr. On the Characteristic Height Scales of the Hurricane Boundary Layer. Mon. Weather Rev. 2011, 139, 2523–2535. [Google Scholar] [CrossRef]
- Ming, J.; Zhang, J.A.; Rogers, R.F. Typhoon kinematic and thermodynamic boundary layer structure from dropsonde composites. J. Geophys. Res. Atmos. 2015, 120, 3158–3172. [Google Scholar] [CrossRef]
- Zhang, J.A.; Rogers, R.F.; Reasor, P.D.; Uhlhorn, E.W.; Marks, F.D. Asymmetric Hurricane Boundary Layer Structure from Dropsonde Composites in Relation to the Environmental Vertical Wind Shear. Mon. Weather Rev. 2013, 141, 3968–3984. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, J.A.; Guimond, S.R.; Wang, X. Hurricane Boundary Layer Height Relative to Storm Motion from GPS Dropsonde Composites. Atmosphere 2019, 10, 339. [Google Scholar] [CrossRef] [Green Version]
- Barnes, G.M. Atypical Thermodynamic Profiles in Hurricanes. Mon. Weather Rev. 2008, 136, 631–643. [Google Scholar] [CrossRef]
- Rogers, R.F.; Zhang, J.A.; Zawislak, J.; Jiang, H.; Alvey, G.R., III; Zipser, E.J.; Stevenson, S.N. Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change, Part II: Kinematic structure and the distribution of deep convection. Mon. Weather Rev. 2016, 144, 3355–3376. [Google Scholar] [CrossRef]
- Zawislak, J.; Jiang, H.; Alvey, G.R., III; Zipser, E.J.; Rogers, R.F.; Zhang, J.A.; Stevenson, S.N. Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part I: Relationship between the thermodynamic structure and precipitation. Mon. Weather Rev. 2016, 144, 3333–3354. [Google Scholar] [CrossRef]
- Zhang, J.A.; Cione, J.J.; Kalina, E.A.; Uhlhorn, E.W.; Hock, T.; Smith, J.A. Observations of Infrared sea surface temperature and air-sea interaction in Hurricane Edouard (2014) using GPS dropsondes. J. Atmos. Ocean. Technol. 2017, 34, 1333–1349. [Google Scholar] [CrossRef]
- Rogers, R.F.; Reasor, P.D.; Zhang, J.A. Multiscale Structure and Evolution of Hurricane Earl (2010) during Rapid Intensification. Mon. Weather Rev. 2015, 143, 536–562. [Google Scholar] [CrossRef]
- Wadler, J.B.; Zhang, J.A.; Jaimes, B.; Shay, L.K. Downdrafts and the Evolution of Boundary Layer Thermodynamics in Hurricane Earl (2010) before and during Rapid Intensification. Mon. Weather Rev. 2018, 146, 3545–3565. [Google Scholar] [CrossRef]
- Ahern, K.; Bourassa, M.A.; Hart, R.E.; Zhang, J.A.; Rogers, R.F. Observed Kinematic and Thermodynamic Structure in the Hurricane Boundary Layer during Intensity Change. Mon. Weather. Rev. 2019, 147, 2765–2785. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Rogers, R.; Zawislak, J.; Zhang, J.A. Assessing the Influence of Convective Downdrafts and Surface Enthalpy Fluxes on Tropical Cyclone Intensity Change in Moderate Vertical Wind Shear. Mon. Weather Rev. 2019, 147, 3519–3534. [Google Scholar] [CrossRef]
- Landsea, C.W.; Franklin, J.L. Atlantic Hurricane Database Uncertainty and Presentation of a New Database Format. Mon. Weather Rev. 2013, 141, 3576–3592. [Google Scholar] [CrossRef]
- Willoughby, H.E.; Chelmow, M.B. Objective Determination of Hurricane Tracks from Aircraft Observations. Mon. Weather Rev. 1982, 110, 1298–1305. [Google Scholar] [CrossRef] [Green Version]
- TC-OBS: The Tropical Cyclone Observations-Based Structure Database, version 0.42, an alpha-level release; Tropical Cyclone Data Project, National Center for Atmospheric Research, Research Applications Laboratory: Boulder, CO, USA, 2018. [CrossRef]
- Martinez, J.; Bell, M.M.; Vigh, J.L.; Rogers, R.F. Examining Tropical Cyclone Structure and Intensification with the FLIGHT+ Dataset from 1999 to 2012. Mon. Weather Rev. 2017, 145, 4401–4421. [Google Scholar] [CrossRef] [Green Version]
- Troen, I.B.; Mahrt, L. A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteorol. 1986, 37, 129–148. [Google Scholar] [CrossRef]
- Vogelezang, D.H.P.; Holtslag, A.A.M. Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteorol. 1996, 81, 245–269. [Google Scholar] [CrossRef]
- Zhang, J.A.; Nolan, D.S.; Rogers, R.F.; Tallapragada, V. Evaluating the Impact of Improvements in the Boundary Layer Parameterization on Hurricane Intensity and Structure Forecasts in HWRF. Mon. Weather Rev. 2015, 143, 3136–3155. [Google Scholar] [CrossRef]
- Emanuel, K.A. An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady-State Maintenance. J. Atmos. Sci. 1986, 43, 585–605. [Google Scholar] [CrossRef]
- Bryan, G.H.; Rotunno, R. The maximum intensity of tropical cyclones in axisymmetry numerical model simulations. Mon. Weather Rev. 2009, 137, 1770–1789. [Google Scholar] [CrossRef]
- Stern, D.P.; Nolan, D.S. On the Height of the Warm Core in Tropical Cyclones. J. Atmos. Sci. 2012, 69, 1657–1680. [Google Scholar] [CrossRef]
- Stern, D.P.; Zhang, F. How Does the Eye Warm? Part I: A Potential Temperature Budget Analysis of an Idealized Tropical Cyclone. J. Atmos. Sci. 2013, 70, 73–90. [Google Scholar] [CrossRef]
- Ooyama, K. Numerical Simulation of the Life Cycle of Tropical Cyclones. J. Atmos. Sci. 1969, 26, 3–40. [Google Scholar] [CrossRef]
- Bell, M.M.; Montgomery, M.T. Observed Structure, Evolution, and Potential Intensity of Category 5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Weather Rev. 2008, 136, 2023–2046. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.K.; Montgomery, M.T.; Van Sang, N. Tropical cyclone spin-up revisited. Q. J. R. Meteorol. Soc. 2009, 135, 1321–1335. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.K.; Zhang, J.A.; Montgomery, M.T. The dynamics of intensification in a Hurricane Weather and Research Forecast of Hurricane Earl (2010). Q. J. R. Meteorol. Soc. 2017, 143, 297–308. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, M.T.; Zhang, J.A.; Smith, R.K. An analysis of the observed low-level structure of rapidly intensifying and mature hurricane Earl (2010). Q. J. R. Meteorol. Soc. 2014, 140, 2132–2146. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.-L.; Chen, H. Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Durden, S.L. Observed Tropical Cyclone Eye Thermal Anomaly Profiles Extending above 300 hPa. Mon. Weather Rev. 2013, 141, 4256–4268. [Google Scholar] [CrossRef]
- Kepert, J.; Wang, Y. The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci. 2001, 58, 2485–2501. [Google Scholar] [CrossRef]
- Zhang, J.A.; Drennan, W.M. An Observational Study of Vertical Eddy Diffusivity in the Hurricane Boundary Layer. J. Atmos. Sci. 2012, 69, 3223–3236. [Google Scholar] [CrossRef]
- Zhang, J.A.; Marks, F.D.; Montgomery, M.T.; Lorsolo, S. An Estimation of Turbulent Characteristics in the Low-Level Region of Intense Hurricanes Allen (1980) and Hugo (1989). Mon. Weather Rev. 2011, 139, 1447–1462. [Google Scholar] [CrossRef] [Green Version]
- Lorsolo, S.; Zhang, J.A.; Marks, F.; Gamache, J. Estimation and Mapping of Hurricane Turbulent Energy Using Airborne Doppler Measurements. Mon. Weather Rev. 2010, 138, 3656–3670. [Google Scholar] [CrossRef]
TC Date | TC Name | TC Strength | Dropsonde Counts |
---|---|---|---|
199808 | BONNIE | TS, H3 | 12, 102 |
199808 | DANIELLE | H1 | 52 |
199809 | EARL | TS, H1, H2 | 3, 1, 2 |
199809 | GEORGES | H1, H2, H4 | 16, 66, 28 |
199908 | BRET | TS, H2, H4 | 3, 4, 7 |
199908 | DENNIS | H1, H2 | 3, 17 |
199909 | FLOYD | H2, H3, H4 | 13, 4, 7 |
200308 | FABIAN | H3, H4 | 91, 63 |
200309 | ISABEL | H2, H3, H4, H5 | 89, 7, 28, 156 |
200408 | CHARLEY | TS, H1, H2, H3, H4 | 3, 12, 21, 15, 14 |
200408 | FRANCES | H2, H3, H4 | 44, 11, 80 |
200409 | IVAN | H3, H4, H5 | 14, 109, 41 |
200409 | JEANNE | H2, H3 | 10, 1 |
200507 | DENNIS | TS, H1, H3 | 4, 18, 2 |
200508 | KATRINA | H3, H4, H5 | 44, 4, 20 |
200509 | RITA | H4, H5 | 3, 10 |
200608 | ERNESTO | TS | 51 |
200609 | HELENE | H1, H2 | 8, 42 |
201108 | IRENE | H1, H2, H3 | 35, 44, 17 |
201110 | RINA | TS, H1, H2, H3 | 1, 2, 1, 3 |
201208 | ISAAC | TS, H1 | 158, 50 |
201208 | LESLIE | TS | 53 |
201210 | SANDY | TS, H1 | 10, 97 |
201309 | INGRID | TS, H1 | 21, 47 |
201310 | KAREN | TS | 39 |
201406 | ARTHUR | TS, H1 | 30, 48 |
201407 | BERTHA | TS, H1 | 37, 22 |
201408 | CRISTOBAL | TS, H1 | 58, 28 |
201409 | EDOUARD | H1, H2, H3 | 22, 51, 5 |
201410 | GONZALO | H3, H4 | 23, 17 |
201508 | DANNY | TS, H1, H3 | 24, 7, 10 |
201508 | ERIKA | TS | 82 |
201608 | EARL | TS, H1 | 11, 5 |
201608 | HERMINE | TS, H1 | 26, 3 |
201609 | KARL | TS | 51 |
201609 | MATTHEW | H1, H2, H3, H4 | 8, 5, 14, 8 |
201708 | FRANKLIN | TS | 24 |
201708 | HARVEY | TS, H1, H2, H3 | 50, 13, 18, 18 |
201708 | IRMA | H3, H4, H5 | 15, 38, 67 |
201709 | JOSE | TS, H1, H4 | 18, 12, 8 |
201709 | MARIA | H1, H2, H3, H4, H5 | 64, 17, 15, 4, 14 |
201710 | NATE | TS, H1 | 52, 53 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Zhang, J.A.; Vigh, J.L.; Zhu, P.; Liu, H.; Wang, X.; Wadler, J.B. An Observational Study of the Symmetric Boundary Layer Structure and Tropical Cyclone Intensity. Atmosphere 2020, 11, 158. https://doi.org/10.3390/atmos11020158
Ren Y, Zhang JA, Vigh JL, Zhu P, Liu H, Wang X, Wadler JB. An Observational Study of the Symmetric Boundary Layer Structure and Tropical Cyclone Intensity. Atmosphere. 2020; 11(2):158. https://doi.org/10.3390/atmos11020158
Chicago/Turabian StyleRen, Yifang, Jun A. Zhang, Jonathan L. Vigh, Ping Zhu, Hailong Liu, Xiang Wang, and Joshua B. Wadler. 2020. "An Observational Study of the Symmetric Boundary Layer Structure and Tropical Cyclone Intensity" Atmosphere 11, no. 2: 158. https://doi.org/10.3390/atmos11020158
APA StyleRen, Y., Zhang, J. A., Vigh, J. L., Zhu, P., Liu, H., Wang, X., & Wadler, J. B. (2020). An Observational Study of the Symmetric Boundary Layer Structure and Tropical Cyclone Intensity. Atmosphere, 11(2), 158. https://doi.org/10.3390/atmos11020158