A Decade of Aerosol Optical Properties Measurements over Athens, Greece
Abstract
1. Introduction
2. Data and Methodology
2.1. Theoretical Background
2.2. Site
2.3. Measurements
3. Results
3.1. Seasonality
3.2. Connection of AOD with PM10
3.3. Particles Classification
3.4. Long-Term Trends
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Pöschl, U. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew. Chemie Int. Ed. 2005, 44, 7520–7540. [Google Scholar] [CrossRef]
- Shiraiwa, M.; Selzle, K.; Pöschl, U. Hazardous components and health effects of atmospheric aerosol particles: Reactive oxygen species, soot, polycyclic aromatic compounds and allergenic proteins. Free Radic. Res. 2012, 46, 927–939. [Google Scholar] [CrossRef]
- Shiraiwa, M.; Ueda, K.; Pozzer, A.; Lammel, G.; Kampf, C.J.; Fushimi, A.; Enami, S.; Arangio, A.M.; Fröhlich-Nowoisky, J.; Fujitani, Y.; et al. Aerosol health effects from molecular to global scales. Environ. Sci. Technol. 2017, 51, 13545–13567. [Google Scholar] [CrossRef]
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and Aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; Chapter 7; pp. 571–657. [Google Scholar]
- Kaufman, Y.J.; Sendra, C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. Int. J. Remote Sens. 1988, 9, 1357–1381. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Strategy for direct and indirect methods for correcting the aerosol effect on remote sensing: From AVHRR to EOS-MODIS. Remote Sens. Environ. 1996, 55, 65–79. [Google Scholar] [CrossRef]
- Krotkov, N.A.; Herman, J.R.; Bhartia, P.K.; Seftor, C.J.; Arola, A.; Kaurola, J.; Koskinen, L.; Kalliskota, S.; Taalas, P.; Geogdzhaev, I.V. Version 2 TOMS UV algorithm: Problems and enhancements. Int. Soc. Opt. Photonics 2002, 4482, 82–94. [Google Scholar]
- Perry, M.; Troccoli, A. Impact of a fire burn on solar irradiance and PV power. Sol. Energy 2015, 114, 167–173. [Google Scholar] [CrossRef]
- Kosmopoulos, P.; Kazadzis, S.; El-Askary, H.; Taylor, M.; Gkikas, A.; Proestakis, E.; Kontoes, C.; El-Khayat, M. Earth-Observation-Based Estimation and Forecasting of Particulate Matter Impact on Solar Energy in Egypt. Remote Sens. 2018, 10, 1870. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Set- zer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Nakajima, T.; Yoon, S.C.; Ramanathan, V.; Shi, G.Y.; Takemura, T.; Higurashi, A.; Takamura, T.; Aoki, K.; Sohn, B.J.; Kim, S.W.; et al. Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in east. J. Geophys. Res. Atmos. 2007, 112, D24. [Google Scholar] [CrossRef]
- WMO/GAW. Experts Workshop on a Global Surface-based Network for Long Term Observations of the Column Aerosol Optical Properties; GAW 162; World Meteorological Organization: Davos, Switzerland, 2005. [Google Scholar]
- Kazadzis, S.; Kouremeti, N.; Nyeki, S.; Gröbner, J.; Wehrli, C. The World Optical Depth Research and Calibration Center (WORCC) quality assurance and quality control of GAW-PFR AOD measurements. Geosci. Instrum. Methods Data Syst. 2018, 7, 39. [Google Scholar] [CrossRef]
- Kazadzis, S.; Kouremeti, N.; Diémoz, H.; Gröbner, J.; Forgan, B.W.; Campanelli, M.; Estellés, V.; Lantz, K.; Michalsky, J.; Carlund, T.; et al. Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements. Atmos. Chem. Phys. 2018, 18, 3185–3201. [Google Scholar] [CrossRef]
- Cuevas, E.; Romero-Campos, P.M.; Kouremeti, N.; Kazadzis, S.; Räisänen, P.; García, R.D.; Barreto, A.; Guirado-Fuentes, C.; Ramos, R.; Toledano, C.; et al. Aerosol optical depth comparison between GAW-PFR and AERONET-Cimel radiometers from long-term (2005–2015) 1 min synchronous measurements. Atmos. Meas. Tech. 2019, 12, 4309–4337. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Kleidman, R.G.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T.F. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef]
- Martonchik, J.V.; Kahn, R.A.; Diner, D.J. Retrieval of Aerosol Properties over Land Using MISR Observations; Springer: Berlin, Germany, 2009; pp. 67–293. [Google Scholar]
- Young, S.A.; Vaughan, M.A.; Kuehn, R.E.; Winker, D.M. The Retrieval of Profiles of Particulate Extinction from Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Data: Uncertainty and Error Sensitivity Analyses. J. Atmos. Oceanic Technol. 2013, 30, 395–428. [Google Scholar] [CrossRef]
- Grey, W.M.; North, P.R. Aerosol Optical Depth ftom Dual-View (A)ATSR Satellite Observations; Springer: Berlin, Germany, 2009; pp. 161–192. [Google Scholar]
- Alpert, P.; Shvainshtein, O.; Kishcha, P. AOD trends over megacities based on space monitoring using MODIS and MISR. Am. J. Clim. Chang. 2012, 1, 117. [Google Scholar] [CrossRef]
- Manktelow, P.T.; Mann, G.W.; Carslaw, K.S.; Spracklen, D.V.; Chipperfield, M.P. Regional and global trends in sulfate aerosol since the 1980s. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Mortier, A.; Schulz, M.; Gliss, J. Biennalupdate of ACTRSI-2 Trends Report on Trend Assessment. 2018. Available online: https://www.actris.eu/Portals/46/Documentation/actris2/Deliverables/public/WP13_D13.6_M36(1).pdf?ver=2019-01-09-090544-173 (accessed on 2 December 2019).
- Eleftheriadis, K.; Colbeck, I.; Housiadas, C.; Lazaridis, M.; Mihalopoulos, N.; Mitsakou, C.; Smolik, J.; Ždímal, V. Size distribution, composition and origin of the submicron aerosol in the marine boundary layer during the eastern Mediterranean “SUB-AERO” experiment. Atmos. Environ. 2006, 40, 6245–6260. [Google Scholar] [CrossRef]
- Gerasopoulos, E.; Amiridis, V.; Kazadzis, S.; Kokkalis, P.; Eleftheratos, K.; Andreae, M.O.; Andreae, T.W. Three-year ground based measurements of aerosol optical depth over the Eastern Mediterranean: The urban environment of Athens. Atmos. Chem. Phys. 2011, 11, 2145–2159. [Google Scholar] [CrossRef]
- Tsekeri, A.; Amiridis, V.; Kokkalis, P.; Basart, S.; Chaikovsky, A.; Dubovik, O.; Mamouri, R.E.; Papayannis, A.; Baldasano, J.M. Application of a synergetic lidar and sunphotometer algorithm for the characterization of a dust event over Athens, Greece. Int. J. Environ. Clim. Chang. 2013, 18, 531–546. [Google Scholar] [CrossRef][Green Version]
- Athanasopoulou, E.; Protonotariou, A.; Papangelis, G.; Tombrou, M.; Mihalopoulos, N.; Gerasopoulos, E. Long-range transport of Saharan dust and chemical transformations over the Eastern Mediterranean. Atmos. Environ. 2016, 140, 592–604. [Google Scholar] [CrossRef]
- Marinou, E.; Amiridis, V.; Binietoglou, A.; Tsikerdekis, S.; Solomos, E.; Proestakis, D.; Konsta, N.; Papagiannopoulos, A.; Tsekeri, G.; Vlastou, P.; et al. Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset. Atmos. Chem. Phys. 2017, 17, 5893–5919. [Google Scholar] [CrossRef]
- Koukouli, M.E.; Kazadzis, S.; Amiridis, V.; Ichoku, C.; Balis, D.S.; Bais, A.F. Signs of a negative trend in the MODIS aerosol optical depth over the Southern Balkans. Atmos. Environ. 2010, 44, 1219–1228. [Google Scholar] [CrossRef]
- Amiridis, V.; Zerefos, C.; Kazadzis, S.; Gerasopoulos, E.; Eleftheratos, K.; Vrekoussis, M.; Stohl, A.; Mamouri, R.E.; Kokkalis, P.; Papayannis, A.; et al. Impact of the 2009 Attica wild fires on the air quality in urban Athens. Atmos. Environ. 2012, 46, 536–544. [Google Scholar] [CrossRef]
- Athanasopoulou, E.D.; Rieger, C.; Walter, H.; Vogel, A.; Karali, M.; Hatzaki, E.; Gerasopoulos, B.; Vogel, C.; Giannakopoulos, M.; Roussos, A. Fire risk, atmospheric chemistry and radiative forcing assessment of wildfires in eastern Mediterranean. Atmos. Environ. 2014, 95, 113–125. [Google Scholar] [CrossRef]
- Amiridis, V.; Balis, D.; Giannakaki, E.; Kazadzis, S.; Arola, A.; Gerasopoulos, E. Characterization of the aerosol type using simultaneous measurements of the lidar ratio and estimations of the single scattering albedo. Atmos. Res. 2011, 101, 46–53. [Google Scholar] [CrossRef]
- Papayannis, A.; Argyrouli, A.; Kokkalis, P.; Tsaknakis, G.; Binietoglou, I.; Solomos, S.; Kazadzis, S.; Samaras, S.; Böckmann, C.; Raptis, P.; et al. Vertical Profiles of Aerosol Optical and Microphysical Properties During a Rare Case of Long-range Transport of Mixed Biomass Burning-polluted Dust Aerosols from the Russian Federation-kazakhstan to Athens, Greece. EPJ Web Conf. EDP Sci. 2016, 119, 18003. [Google Scholar] [CrossRef]
- Bryant, C.; Eleftheriadis, K.; Smolik, J.; Zdimal, V.; Mihalopoulos, N.; Colbeck, I. Optical properties of aerosols over the eastern Mediterranean. Atmos. Environ. 2006, 40, 6229–6244. [Google Scholar] [CrossRef]
- Paraskevopoulou, D.; Liakakou, E.; Gerasopoulos, E.; Mihalopoulos, N. Sources of atmospheric aerosol from long-term measurements (5 years) of chemical composition in Athens, Greece. Sci. Total Environ. 2015, 527, 165–178. [Google Scholar] [CrossRef]
- Fοurtziou L., E.; Liakakou, I.; Stavroulas, C.; Theodosi, P.; Zarmpas, B.; Psiloglou, J.; Sciare, T.; Maggos, K.; Bairachtari, A.; Bougiatioti, E.; et al. Multi-tracer approach to characterize domestic wood burning in Athens (Greece) during wintertime. Atmos. Environ. 2017, 148, 89–101. [Google Scholar] [CrossRef]
- Athanasopoulou, E.; Speyer, O.; Brunner, D.; Vogel, H.; Vogel, B.; Mihalopoulos, N.; Gerasopoulos, E. Changes in domestic heating fuel use in Greece: Effects on atmospheric chemistry and radiation. Atmos. Chem. Phys. 2017, 17, 10597–10618. [Google Scholar] [CrossRef]
- Gratsea, M.; Liakakou, E.; Mihalopoulos, N.; Adamopoulos, A.; Tsilibari, E.; Gerasopoulos, E. The combined effect of reduced fossil fuel consumption and increasing biomass combustion on Athens’ air quality, as inferred from long term CO measurements. Sci. Total Environ. 2017, 592, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Kalogridis, A.-C.; Vratolis, S.; Liakakou, E.; Gerasopoulos, E.; Mihalopoulos, N.; Eleftheriadis, K. Assessment of wood burning versus fossil fuel contribution to wintertime black carbon and carbon monoxide concentrations in Athens, Greece. Atmos. Chem. Phys. 2018, 18, 10219–10236. [Google Scholar] [CrossRef]
- Paraskevopoulou, D.; Liakakou, E.; Gerasopoulos, E.; Theodosi, C.; Mihalopoulos, N. Long-term characterization of organic and elemental carbon in the PM2.5 fraction: The case of Athens, Greece. Atmos. Chem. Phys. 2014, 14, 13313–13325. [Google Scholar] [CrossRef]
- Theodosi, C.; Tsagkaraki, M.; Zarmpas, P.; Grivas, G.; Liakakou, E.; Paraskevopoulou, D.; Lianou, M.; Gerasopoulos, E.; Mihalopoulos, N. Multi-year chemical composition of the fine-aerosol fraction in Athens, Greece, with emphasis on the contribution of residential heating in wintertime. Atmos. Chem. Phys. 2018, 18, 14371–14391. [Google Scholar] [CrossRef]
- Stavroulas, I.; Bougiatioti, A.; Grivas, G.; Paraskevopoulou, D.; Tsagkaraki, P.; Zarmpas, P.; Liakakou, E.; Gerasopoulos, E.; Mihalopoulos, N. Sources and processes that control the submicron organic aerosol composition in an urban Mediterranean environment (Athens): A high temporal-resolution chemical composition measurement study. Atmos. Chem. Phys. 2019, 19, 901–919. [Google Scholar] [CrossRef]
- Taghvaee, S.; Sowlat, M.H.; Diapouli, E.; Ioannis, M.; Vasilatou, V.; Eleftheriadis, K.; Sioutas, C. Science of the Total Environment Source apportionment of the oxidative potential of fi ne ambient. Sci. Total Environ. 2019, 653, 1407–1416. [Google Scholar] [CrossRef]
- Eleftheriadis, K. Long term variability of the air pollution sources reflected on the state of mixing of the urban aerosol. Environ. Sci. Health 2019, 8, 36–39. [Google Scholar] [CrossRef]
- Tsiflikiotou, M.A.; Kostenidou, E.; Papanastasiou, D.K.; Patoulias, D.; Zarmpas, P.; Paraskevopoulou, D.; Diapouli, E.; Kaltsonoudis, C.; Florou, K.; Bougiatioti, A.; et al. Summertime particulate matter and its composition in Greece. Atmos. Environ. 2019, 213, 597–607. [Google Scholar] [CrossRef]
- Ångström, A. On the atmospheric transmission of sun radiation and on dust in the air. Geografiska Ann. 1929, 11, 156–166. [Google Scholar]
- Corr, C.A.; Krotkov, N.; Madronich, S.; Slusser, J.R.; Holben, B.; Gao, W.; Flynn, J.; Lefer, B.; Kreidenweis, S.M. x Retrieval of aerosol single scattering albedo at ultraviolet wavelengths at the T1 site during MILAGRO. Atmos. Chem. Phys. 2009, 9, 5813–5827. [Google Scholar]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; p. 666. [Google Scholar]
- Kalabokas, P.D.; Viras, L.G.; Repapis, C.C. Analysis of the 11-year record (1987–1997) of air pollution measurements in Athens, Greece, Part I: Primary air pollutants. Glob. Nest Int. J. 1999, 1, 157–168. [Google Scholar]
- Gkikas, A.; Basart, S.; Hatzianastassiou, N.; Marinou, E.; Amiridis, V.; Kazadzis, S.; Pey, J.; Querol, X.; Jorba, O.; Gassó, S.; et al. Mediterranean intense desert dust outbreaks and their vertical structure based on remote sensing data. Atmos. Chem. Phys. 2016, 16, 8609–8642. [Google Scholar] [CrossRef]
- Gkikas, A.; Hatzianastassiou, N.; Mihalopoulos, N.; Torres, O. Characterization of aerosol episodes in the greater Mediterranean Sea area from satellite observations (2000–2007). Atmos. Environ. 2016, 128, 286–304. [Google Scholar] [CrossRef]
- Holben, B.; Slutsker, I.; Giles, D.; Eck, T.; Smirnov, A.; Sinyuk, A.; Schafer, J.; Sorokin, M.; Rodriguez, J.; Kraft, J.; et al. AERONET Version 3 Release: Providing Significant Improvements for Multi-Decadal Global Aerosol Database and Near Real-Time Validation, Nasa Technical Reports. 2016. Available online: https://ntrs.nasa.gov/search.jsp?R=20160013870 (accessed on 30 January 2020).
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef]
- Kazadzis, S.; Raptis, P.; Kouremeti, N.; Amiridis, V.; Arola, A.; Gerasopoulos, E.; Schuster, G.L. Aerosol absorption retrieval at ultraviolet wavelengths in a complex environment. Atmos. Meas. Tech. 2016, 9, 5997. [Google Scholar] [CrossRef]
- Salminen, K.; Karlsson, V. Comparability of low-volume PM10 sampler with β-attenuation monitor in background air. Atmos. Environ. 2002, 37, 3707–3712. [Google Scholar] [CrossRef]
- Schroedter-Homscheidt, M.; Arola, A.; Killius, N.; Lefèvre, M.; Saboret, L.; Wandji, W.; Wald, L.; Wey, E. The Copernicus atmosphere monitoring service (CAMS) radiation service in a nutshell. In Proceedings of the 22nd So-larPACES Conference, Abu Dhabi, UAE, 14 October 2016. [Google Scholar]
- Flemming, J.; Huijnen, V.; Remy, S.; Kipling, Z. Chemistry and aerosol model development for the Copernicus Atmosphere Monitoring Service at ECWMF. EGU Gen. Assem. Conf. Abstr. 2017, 19, 16776. [Google Scholar]
- Peuch, V.H.; Engelen, R.; Ades, M.; Barré, J.; Inness, A.; Flemming, J.; Kipling, Z.; Agusti-Panareda, A.; Parrington, M.; Ribas, R.; et al. The Use of Satellite Data in the Copernicus Atmosphere Monitoring Service (Cams). In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 27 July 2018; pp. 1594–1596. [Google Scholar]
- Benedetti, A.; Morcrette, J.J.; Boucher, O.; Dethof, A.; Engelen, R.J.; Fisher, M.; Flentje, H.; Huneeus, N.; Jones, L.; Kaiser, J.W.; et al. Aerosol analysis and forecast in the European centre for medium-range weather forecasts integrated forecast system: 2. Data assimilation. J. Geophys. Res. Atmos. 2009, 114, D13. [Google Scholar] [CrossRef]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.-J. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Wald, A.E.; Remer, L.A.; Gao, B.C.; Li, R.R.; Flynn, L. The MODIS 2.1-/spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1286–1298. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Tanré, D.; Kaufman, Y.J.; Herman, M.; Mattoo, S. Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J. Geophys. Res. Atmos. 1997, 102, 16971–16988. [Google Scholar] [CrossRef]
- Hsu, N.C.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- LAADS DAAC. Available online: https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 16 December 2019).
- MODIS Atmosphere QA Plan for Collection 61m Version 9. Available online: https://modis-images.gsfc.nasa.gov/_docs/QA_Plan_C61_Master_2017_03_15.pdf (accessed on 16 December 2019).
- Amiridis, V.; Balis, D.S.; Giannakaki, E.; Stohl, A.; Kazadzis, S.; Koukouli, M.E.; Zanis, P. Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements. Atmos. Chem. Phys. 2009, 9, 2431–2440. [Google Scholar] [CrossRef]
- Kirchstetter, T.W.; Novakov, T.; Hobbs, P.V. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. 2004, 109, D21208. [Google Scholar] [CrossRef]
- Schuster, G.L.; Dubovik, O.; Arola, A. Remote sensing of soot carbon–Part 1: Distinguishing different absorbing aerosol species. Atmos. Chem. Phys. 2016, 16, 1565–1585. [Google Scholar] [CrossRef]
- Kalivitis, N.; Gerasopoulos, E.; Vrekoussis, M.; Kouvarakis, G.; Kubilay, N.; Hatzianastassiou, N.; Vardavas, I.; Mihalopoulos, N. Dust transport over the eastern Mediterranean derived from Total Ozone Mapping Spectrometer, Aerosol Robotic Network, and surface measurements. J. Geophys. Res. Atmos. 2007, 112, D3. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS). 20 July 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 16 December 2019).
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2001, 59, 590–608. [Google Scholar] [CrossRef]
- Gobbi, G.P.; Kaufman, Y.J.; Koren, I.; Eck, T.F. Classification of aerosol properties derived from AERONET direct sun data. Atmos. Chem. Phys. 2007, 7, 453–458. [Google Scholar] [CrossRef]
- Greek Ministry of Environment and Energy. Annual Air Quality Report 2018. Available online: http://www.ypeka.gr/LinkClick.aspx?fileticket=FJbhHPSTih4%3d&tabid=490&language=el-GR (accessed on 16 December 2019).
- Andreae, M.O.; Gelencsér, A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 2006, 6, 3131–3148. [Google Scholar] [CrossRef]
DJF | MAM | JJA | SON | All Seasons | |
---|---|---|---|---|---|
Lower Left Low AOD–Low PM10 | 39.5% | 29.4% | 31.9% | 51.6% | 42.5% |
Lower Right Low AOD–Low PM10 | 8.1% | 16.7% | 23.8% | 14.5% | 18.9% |
Upper right High AOD–High PM10 | 15.1% | 35.0% | 37.5% | 24.2% | 23.6% |
Upper left Low AOD–High PM10 | 36.6% | 18.9% | 6.90% | 9.7% | 14.9% |
AOD Trends (% per Year) | AERONET 440 nm | CAMS 500 nm | MODIS-TERRA 550 nm | MODIS-AQUA 550 nm |
---|---|---|---|---|
Annual | −1.1 ± 0.7 | −2.5 ± 1.1 | −1.7 ± 1.0 | −1.7 ± 1.0 |
DJF | −0.1 ± 0.9 | −4.2 ± 1.5 | −1.3 ± 1.4 | −1.3 ± 1.4 |
MAM | −1.8 ± 0.9 | −0.5 ± 1.3 | −1.7 ± 1.2 | −1.2 ± 1.3 |
JJA | −3.2 ± 1.1 | −1.9 ± 1.5 | −2.9 ± 1.3 | −2.7 ± 1.4 |
SON | −0.8 ± 1.0 | −2.1 ± 1.4 | −2.6 ± 1.3 | −2.6 ± 1.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raptis, I.-P.; Kazadzis, S.; Amiridis, V.; Gkikas, A.; Gerasopoulos, E.; Mihalopoulos, N. A Decade of Aerosol Optical Properties Measurements over Athens, Greece. Atmosphere 2020, 11, 154. https://doi.org/10.3390/atmos11020154
Raptis I-P, Kazadzis S, Amiridis V, Gkikas A, Gerasopoulos E, Mihalopoulos N. A Decade of Aerosol Optical Properties Measurements over Athens, Greece. Atmosphere. 2020; 11(2):154. https://doi.org/10.3390/atmos11020154
Chicago/Turabian StyleRaptis, Ioannis-Panagiotis, Stelios Kazadzis, Vassilis Amiridis, Antonis Gkikas, Evangelos Gerasopoulos, and Nikolaos Mihalopoulos. 2020. "A Decade of Aerosol Optical Properties Measurements over Athens, Greece" Atmosphere 11, no. 2: 154. https://doi.org/10.3390/atmos11020154
APA StyleRaptis, I.-P., Kazadzis, S., Amiridis, V., Gkikas, A., Gerasopoulos, E., & Mihalopoulos, N. (2020). A Decade of Aerosol Optical Properties Measurements over Athens, Greece. Atmosphere, 11(2), 154. https://doi.org/10.3390/atmos11020154