Warm Island Effect in the Badain Jaran Desert Lake Group Region Inferred from the Accumulated Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
2.3.1. Calculation of Accumulated Temperature
2.3.2. Correcting the Daily Mean Temperature
2.3.3. Kriging Interpolation
3. Results
3.1. Comparison of Observed and Fitted Values
3.2. Spatial Distribution Analysis
4. Discussion
4.1. Reason for the Warm Island Effect
4.2. Implications of the Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chapin, F.S.; Matson, P.A.; Mooney, H.A. Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2002; pp. 18–45. [Google Scholar]
- Levitus, S.; Antonov, J.I.; Wang, J.; Delworth, T.L.; Dixon, K.W.; Broccoli, A.J. Anthropogenic Warming of Earth’s Climate System. Science 2001, 292, 267–270. [Google Scholar] [CrossRef]
- Wang, K.C.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50, RG2005. [Google Scholar] [CrossRef]
- Bartlein, P.J.; Harrison, S.P.; Izumi, K. Underlying causes of Eurasian midcontinental aridity in simulations of mid-Holocene climate. Geophys. Res. Lett. 2017, 44, 9020–9028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Ma, Z.G.; Zhao, T.B. Modeling and analysis of the potential impacts on regional climate due to vegetation degradation over arid and semi-arid regions of China. Clim. Chang. 2017, 144, 461–473. [Google Scholar] [CrossRef]
- Xue, Y.K. The Impact of Desertification in the Mongolian and the Inner Mongolian Grassland on the Regional Climate. J. Clim. 1996, 9, 2173–2189. [Google Scholar] [CrossRef]
- Laity, J. Deserts and the Desert Environment; Wiley-Blackwell: Hoboken, NJ, USA, 2008; pp. 48–69. [Google Scholar]
- Warner, T.T. Desert Meteorology, 1st ed.; Cambridge University Press: Cambridge, UK, 2004; pp. 1–4. [Google Scholar]
- Huo, W.; He, Q.; Yang, X.H.; Zhao, Y.; Wang, S.G.; Li, Y.H. Characteristics of Sand-dust Weather over Kumtagh Desert during 2007—2008 and the Weather Styles. J. Desert Res. 2011, 31, 1037–1045. [Google Scholar]
- Petrie, M.D.; Collins, S.L.; Litvak, M.E. The ecological role of small rainfall events in a desert grassland. Ecohydrology 2015, 8, 1614–1622. [Google Scholar] [CrossRef]
- Wang, N.A.; Ma, N.; Chen, H.B.; Chen, X.L.; Dong, C.Y.; Zhang, Z.Y. A preliminary study of precipitation characteristics in the hinterland of Badain Jaran desert. Adv. Water Sci. 2013, 24, 153–160. [Google Scholar]
- Labraga, J.C.; Villalba, R. Climate in the Monte Desert: Past trends, present conditions, and future projections. J. Arid Environ. 2009, 73, 154–163. [Google Scholar] [CrossRef]
- Quade, J.; Rech, J.A.; Betancourt, J.L.; Latorre, C.; Quade, B.; Rylander, K.A.; Fisher, T.S. Paleowetlands and regional climate change in the central atacama desert, northern chile. Quat. Res. 2008, 69, 343–360. [Google Scholar] [CrossRef]
- Herrmann, S.M.; Anyamba, A.; Tucker, C.J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob. Environ. Chang. 2005, 15, 394–404. [Google Scholar] [CrossRef]
- Mahowald, N.M. Anthropocene changes in desert area: Sensitivity to climate model predictions. Geophys. Res. Lett. 2007, 34, L18817. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.F.; Smith, D.M.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.; Downing, T.E.; Dowlatabadi, H.; Fernandez, R.J.; Herrick, J.E.; et al. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Han, B.; Lv, S.H.; Wen, L.J.; Meng, X.H.; Li, Z.G. The different influence of the residual layer on the development of the summer convective boundary layer in two deserts in northwest China. Theor. Appl. Climatol. 2016, 131, 877–888. [Google Scholar]
- Salguero-Gomez, R.; Siewert, W.; Casper, B.B.; Tielborger, K. A demographic approach to study effects of climate change in desert plants. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 3100–3114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.C.; Cai, D.W.; Ao, Y.H.; An, Z.S.; Guo, Z.C. Local Circulation Maintains the Coexistence of Lake-dune Pattern in the Badain Jaran Desert. Sci. Rep. 2017, 7, 40238. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.H.; Wang, N.A.; Xie, Z.Y.; Ma, X.L.; Huete, A. Water Loss Due to Increasing Planted Vegetation over the Badain Jaran Desert, China. Remote Sens. 2018, 10, 134. [Google Scholar] [CrossRef] [Green Version]
- Goyal, R.K. Sensitivity of evapotranspiration to global warming: A case study of arid zone of rajasthan (India). Agric. Water Manag. 2004, 69, 1–11. [Google Scholar] [CrossRef]
- Huang, J.P.; Ji, M.X.; Xie, Y.K.; Wang, S.S.; He, Y.L.; Ran, J.J. Global semi-arid climate change over last 60 years. Clim. Dyn. 2016, 46, 1131–1150. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.F.; Wang, N.A.; Chen, H.B.; Dong, C.Y.; Zhang, H.A. Study on the Boundary and the Area of Badain Jaran Desert Based on Remote Sensing Imagery. Prog. Geogr. 2010, 29, 1087–1094. [Google Scholar]
- Chen, J.S.; Li, L.; Wang, J.Y.; Barry, D.A.; Sheng, X.F.; Gu, W.Z.; Zhao, X.; Chen, L. Groundwater maintains dune landscape. Nature 2004, 432, 459–460. [Google Scholar] [CrossRef] [PubMed]
- Gates, J.B.; Edmunds, W.M.; Darling, W.G.; Ma, J.Z.; Pang, Z.H.; Young, A.A. Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers. Appl. Geochem. 2008, 23, 3519–3534. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.A.; Ning, K.; Li, Z.L.; Wang, Y.X.; Jia, P.; Ma, L. Holocene high lake-levels and pan-lake period on Badain Jaran Desert. Sci. China 2016, 59, 1633–1641. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, N.A.; Liao, K.T.; Klenk, P. Geomorphological evolution revealed by aeolian sedimentary structure in Badain Jaran Desert on Alxa Plateau, Northwest China. Chin. Geogr. Sci. 2011, 21, 267–278. [Google Scholar] [CrossRef]
- Dong, C.Y.; Wang, N.A.; Chen, J.S.; Li, Z.L.; Chen, H.B.; Chen, L.; Ma, N. New observational and experimental evidence for the recharge mechanism of the lake group in the Alxa Desert, north-central China. J. Arid Environ. 2016, 124, 48–61. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, Z.; Fan, Y.T.; Wang, H.J.; Deng, H.J. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ. Res. 2015, 139, 11–19. [Google Scholar] [CrossRef]
- Su, C.X.; Hu, Y.J. Cold island effect over oasis and lake. Chin. Sci. Bull. 1988, 33, 1023–1026. [Google Scholar]
- Zhang, X.H.; Wang, N.A.; Zhao, L.Q.; Wu, Y.; Liang, X.Y. Spatial distribution of winter warm islands in Badain Jaran Desert based on MODIS data. J. Lanzhou Univ. (Nat. Sci.) 2015, 51, 180–185. [Google Scholar]
- He, B.J.; Zhao, Z.Q.; Shen, L.D.; Wang, H.B.; Li, L.G. An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under different temperature backgrounds based on landsat 8 image. Sustain. Cities Soc. 2019, 44, 416–427. [Google Scholar] [CrossRef]
- Ma, N.; Wang, N.A.; Zhao, L.Q.; Zhang, Z.Y.; Dong, C.Y.; Shen, S.P. Observation of mega-dune evaporation after various rain events in the hinterland of Badain Jaran Desert, China. Chin. Sci. Bull. 2014, 59, 162–170. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, T.; Wang, X.M. Geomorphology of the megadunes in the Badain Jaran Desert. Geomorphology 2004, 60, 191–203. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Wang, N.A.; Wu, Y.; Shen, S.P.; Zhang, X.H.; Chang, J.L. Remote sensing on spatial changes of lake area in Badain Jaran Desert hinterland during 1973–2010. J. Lake Sci. 2013, 25, 514–520. [Google Scholar]
- Wu, Y.; Wang, N.A.; Zhao, L.Q.; Zhang, Z.Y.; Chen, L.; Lu, Y.; Lü, X.N.; Chang, J.L. Hydrochemical characteristics and recharge sources of lake nuoertu in the badain jaran desert. Chin. Sci. Bull. 2014, 59, 886–895. [Google Scholar] [CrossRef]
- Yang, X.P.; Williams, M.A. The ion chemistry of lakes and late Holocene desiccation in the Badain Jaran Desert, Inner Mongolia, China. Catena 2003, 51, 45–60. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Sun, Y.; Mao, W.Y.; Liu, Y.Y.; Ren, Y. Regional Response of Temperature Change in the Arid Regions of China to Global Warming. Arid Zone Res. 2010, 27, 592–599. [Google Scholar]
- Liu, X.A.; Yu, G.R.; Fan, L.S.; Li, Z.Q.; He, H.L.; Guo, X.B.; Ren, C.Y. Study on Spatialization Technology of Terrestrial Eco-information in Chin(III): Temperature and Precipitation. J. Nat. Resour. 2004, 19, 818–825. [Google Scholar]
- Yan, M.H.; Liu, X.T.; Zhang, W.; Li, X.J.; Liu, S. Spatio-temporal changes of ≥10 °C accumulated temperature in northeastern China since 1961. Chin. Geogr. Sci. 2011, 21, 17–26. [Google Scholar] [CrossRef]
- Xu, M.Q.; Li, Z.L. Accumulated temperature changes in desert region and surrounding area during 1960–2013: A case study in the Alxa Plateau, Northwest China. Environ. Earth Sci. 2016, 75, 1276. [Google Scholar] [CrossRef]
- Sang, J.R.; Liu, Y.L.; Han, S.T.; Qiu, W. Character of the climate change for the negative accumulated temperature in Ningxia. Sci. Meteorol. Sin. 2007, 27, 202–207. [Google Scholar]
- Fang, J.Y. Study on the geographic elements affecting temperature distribution in China. Acta Ecol. Sin. 1992, 12, 97–104. [Google Scholar]
- Dai, S.P.; Li, H.L.; Luo, H.X.; Zhao, Y.F.; Zhang, K.X. Changes of annual accumulated temperature over Southern China during 1960–2011. J. Geogr. Sci. 2015, 25, 1155–1172. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T.; Balmaseda, M.A. Earth’s Energy Imbalance. J. Clim. 2014, 27, 3129–3144. [Google Scholar] [CrossRef] [Green Version]
- Bisht, G.; Venturini, V.; Islam, S.; Jiang, L. Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days. Remote Sens. Environ. 2005, 97, 52–67. [Google Scholar] [CrossRef]
- Hu, W.F.; Wang, N.A.; Zhao, L.Q.; Ning, K.; Zhang, X.H.; Sun, J. Surface energy and water vapor fluxes observed on a megadune in the Badain Jaran Desert, China. J. Arid Land 2015, 7, 579–589. [Google Scholar] [CrossRef]
- Sun, J.; Hu, W.F.; Wang, N.A.; Zhao, L.Q.; An, R.; Ning, K.; Zhang, X.H. Eddy covariance measurements of water vapor and energy flux over a lake in the Badain Jaran Desert, China. J. Arid Land 2018, 10, 517–533. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.F. Research on Water—Heat Exchange between Land and Air in Badain Jaran Desert Based on Observation. Ph.D. Thesis, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China, 2015; pp. 79–83. [Google Scholar]
- Hu, W.F.; Wang, N.A.; Zhao, L.Q.; Ning, K.; Zhang, X.H.; Sun, J. Water-heat exchange over a typical lake in Badain Jaran Desert, China. Prog. Geogr. 2015, 34, 1061–1071. [Google Scholar]
- Ma, N.; Wang, N.A.; Huang, Y.Z.; Li, H.Y.; Lu, J.W. Characteristics of Radiation Budget and Energy Partitioning on Land and Lake Surface under Different Summer Weather Conditions in the Hinterland of Badain Jaran Desert. J. Nat. Resour. 2015, 30, 796–809. [Google Scholar]
- Oke, T.R. Boundary Layer Climates; Routledge: Methuen, MA, USA; Abingdon, UK, 1978. [Google Scholar]
- Shao, T.J.; Zhao, J.B.; Zhou, Q.; Dong, Z.B.; Ma, Y.D. Recharge sources and chemical composition types of groundwater and lake in the Badain Jaran Desert, northwestern China. J. Geogr. Sci. 2012, 22, 479–496. [Google Scholar] [CrossRef]
- Yang, X.P.; Ma, N.N.; Dong, J.F.; Zhu, B.Q.; Xu, B.; Ma, Z.B.; Liu, J.Q. Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert, western China. Quat. Res. 2010, 73, 10–19. [Google Scholar] [CrossRef]
- Ma, J.Z.; Edmunds, W.M. Groundwater and lake evolution in the Badain Jaran Desert ecosystem, Inner Mongolia. Hydrogeol. J. 2006, 14, 1231–1243. [Google Scholar] [CrossRef]
Station | Comparison | Accumulated Temperature (°C) | Start Dates Month (M)-Day (D) | End Dates (M-D) | Duration Days (D) |
---|---|---|---|---|---|
V1 | Observed value | 4724.9 | 3-3 | 11-22 | 265 |
Fitted value | 4254.7 | 3-5 | 11-16 | 257 | |
V2 | Observed value | 4214.1 | 3-6 | 11-14 | 254 |
Fitted value | 3708.6 | 3-10 | 11-6 | 242 | |
V3 | Observed value | 4588.1 | 3-5 | 11-15 | 256 |
Fitted value | 4287.3 | 3-7 | 11-14 | 253 | |
V4 | Observed value | 4178.9 | 3-9 | 11-7 | 244 |
Fitted value | 4184.6 | 3-9 | 11-15 | 252 |
Station | Comparison | Accumulated Temperature (℃) | Start Dates (M-D) | End Dates (M-D) | Duration Days (D) |
---|---|---|---|---|---|
V1 | Observed value | 4257.1 | 4-2 | 10-17 | 199 |
Fitted value | 3790.9 | 4-5 | 10-9 | 188 | |
V2 | Observed value | 3539.9 | 4-22 | 10-12 | 174 |
Fitted value | 3189.1 | 4-23 | 10-7 | 168 | |
V3 | Observed value | 4161.3 | 4-4 | 10-15 | 195 |
Fitted value | 3865.5 | 4-6 | 10-11 | 189 | |
V4 | Observed value | 3730.9 | 4-10 | 10-6 | 180 |
Fitted value | 3724.3 | 4-10 | 10-8 | 182 |
Station | Comparison | Negative Accumulated Temperature (°C) | Duration Days (D) |
---|---|---|---|
V1 | Observed value | −520.3 | 79 |
Fitted value | −647.3 | 85 | |
V2 | Observed value | −505.9 | 77 |
Fitted value | −681.9 | 87 | |
V3 | Observed value | −531.6 | 81 |
Fitted value | −579.7 | 83 | |
V4 | Observed value | −718.0 | 87 |
Fitted value | −573.2 | 85 |
land Surface | Lake Surface | ||||||
---|---|---|---|---|---|---|---|
Weather | Net Radiation | Sensible Heat Flux | Latent Heat Flux | Soil Heat Flux | Net Radiation | Sensible Heat Flux | Latent Heat Flux |
Sunny Day | 7.3 | 5.4 | 0.5 | 1.1 | 16.0 | −0.4 | 19.0 |
Partly Cloudy | 7.0 | 4.2 | 1.1 | 1.2 | 14.7 | −1.3 | 15.6 |
Cloudy Day | 4.4 | 2.3 | 1.6 | −0.5 | 7.7 | −0.1 | 16.0 |
Rainy Day | 2.2 | 1.7 | 3.0 | −3.2 | 1.0 | 1.0 | 11.0 |
Site | Temperature (°C) | Site | Temperature (°C) |
---|---|---|---|
Habutenuoer Lake | 17.9 | Zhaoergetu Lake | 17.7 |
Xibayannuoer Lake | 16.9 | Yihejigede Lake | 17.2 |
Xinuoertu Lake | 13.7 | Taolaitu Lake | 17.3 |
Gelitu Lake | 14.9 | Sumujilin Lake | 14.2 |
Naogunnuoer Lake | 17.3 | Barunjilin Lake | 16.5 |
Taosijilin Lake | 17.3 | Bilutu Lake | 14.6 |
Zhongbayannuoer Lake | 17.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Zhao, L.; Niu, Z.; Xu, X.; Meng, N.; Wang, N. Warm Island Effect in the Badain Jaran Desert Lake Group Region Inferred from the Accumulated Temperature. Atmosphere 2020, 11, 153. https://doi.org/10.3390/atmos11020153
Liang X, Zhao L, Niu Z, Xu X, Meng N, Wang N. Warm Island Effect in the Badain Jaran Desert Lake Group Region Inferred from the Accumulated Temperature. Atmosphere. 2020; 11(2):153. https://doi.org/10.3390/atmos11020153
Chicago/Turabian StyleLiang, Xiaoyan, Liqiang Zhao, Zhenmin Niu, Xingbin Xu, Nan Meng, and Nai’ang Wang. 2020. "Warm Island Effect in the Badain Jaran Desert Lake Group Region Inferred from the Accumulated Temperature" Atmosphere 11, no. 2: 153. https://doi.org/10.3390/atmos11020153
APA StyleLiang, X., Zhao, L., Niu, Z., Xu, X., Meng, N., & Wang, N. (2020). Warm Island Effect in the Badain Jaran Desert Lake Group Region Inferred from the Accumulated Temperature. Atmosphere, 11(2), 153. https://doi.org/10.3390/atmos11020153