Contribution of Volcanic and Fumarolic Emission to the Aerosol in Marine Atmosphere in the Central Mediterranean Sea: Results from Med-Oceanor 2017 Cruise Campaign
Abstract
:1. Introduction
2. Studied Area and Measurement Scheme
2.1. The Mount Etna
2.2. Stromboli
2.3. Marsili
2.4. Phlegraean Fields
2.5. Vulcano
2.6. Ischia
2.7. Panarea
3. Experiments
3.1. Sampling and Laboratory Analysis
3.2. Chemical Mass Closure
3.3. Data Analysis and Receptor Modeling
4. Results and Discussions
4.1. Meteorological Conditions
4.2. Percentage Chemical Composition of PM
4.3. Volcanic Areas
4.4. Fumarole Areas
4.5. Factor Analysis and Source Identification
- Factor 1: Anthropogenic (pollution). It can be referred to as anthropogenic sources because it has high loadings for carbonaceous material (EC, OC), As, Sb, and Pb. This result found a match with intensive vehicular traffic observed during the sampling at the Phlegraean Fields area and is in accordance with the findings reported in Section 4.2.
- Factor 2: Mineral (e.g., soil, African dust, etc.). This factor is characterized by high loadings for Al, Fe, Mg, Cr, and Mn, and can be associated at the first geogenic source (mineral sources) since these elements are common in the crust, basalt of volcanoes, and also in African dust.
- Factor 5: Shipping emissions. This factor can be attributed to the shipping emissions because it has high loadings of PMx, nss-SO42−, NH4+ and V. The vanadium indeed is used as a tracer of shipping emission [64].
- Factor 6: Rare earth elements. The sixth factor represents a second potential geogenic source characterized by high loadings of Zr and REEs coming from volcanic ash. Anti-correlated with Cl.
4.6. SEM/EDX Analysis
4.7. Stepwise Linear Discriminant (S-LDA) Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Viana, M.; Pey, J.; Querol, X.; Alastuey, A.; de Leeuw, F.; Lükewille, A. Natural sources of atmospheric aerosols influencing air quality across Europe. Sci. Total Environ. 2014, 472, 825–833. [Google Scholar] [CrossRef]
- Naccarato, A.; Tassone, A.; Moretti, S.; Elliani, R.; Sprovieri, F.; Pirrone, N.; Tagarelli, A. A green approach for organophosphate ester determination in airborne particulate matter: Microwave-assisted extraction using hydroalcoholic mixture coupled with solid-phase microextraction gas chromatography-tandem mass spectrometry. Talanta 2018, 189, 657–665. [Google Scholar] [CrossRef]
- Naccarato, A.; Elliani, R.; Sindona, G.; Tagarelli, A. Multivariate optimization of a microextraction by packed sorbent-programmed temperature vaporization-gas chromatography–tandem mass spectrometry method for organophosphate flame retardant analysis in environmental aqueous matrices. Anal. Bioanal. Chem. 2017, 409, 7105–7120. [Google Scholar] [CrossRef]
- Talarico, F.; Brandmayr, P.; Giulianini, P.G.; Ietto, F.; Naccarato, A.; Perrotta, E.; Tagarelli, A.; Giglio, A. Effects of metal pollution on survival and physiological responses in Carabus (Chaetocarabus) lefebvrei (Coleoptera, Carabidae). Eur. J. Soil Biol. 2014, 61, 80–89. [Google Scholar] [CrossRef]
- Aleksandropoulou, V.; Torseth, K.; Lazaridis, M. Contribution of natural sources to PM emissions over the metropolitan areas of athens and Thessaloniki. Aerosol Air Qual. Res. 2015, 15, 1300–1312. [Google Scholar] [CrossRef] [Green Version]
- Bencardino, M.; Andreoli, V.; D’Amore, F.; De Simone, F.; Mannarino, V.; Castagna, J.; Moretti, S.; Naccarato, A.; Sprovieri, F.; Pirrone, N. Carbonaceous Aerosols Collected at the Observatory of Monte Curcio in the Southern Mediterranean Basin. Atmosphere 2019, 10, 592. [Google Scholar] [CrossRef] [Green Version]
- Bencardino, M.M.; Pirrone, N.N.; Sprovieri, F.F. Aerosol and ozone observations during six cruise campaigns across the Mediterranean basin: temporal, spatial, and seasonal variability. Environ. Sci. Pollut. Res. 2014, 21, 4044–4062. [Google Scholar] [CrossRef] [PubMed]
- Beuck, H.; Quass, U.; Klemm, O.; Kuhlbusch, T.A.J. Assessment of sea salt and mineral dust contributions to PM10 in NW Germany using tracer models and positive matrix factorization. Atmos. Environ. 2011, 45, 5813–5821. [Google Scholar] [CrossRef]
- Dinoi, A.; Cesari, D.; Marinoni, A.; Bonasoni, P.; Riccio, A.; Chianese, E.; Tirimberio, G.; Naccarato, A.; Sprovieri, F.; Andreoli, V.; et al. Inter-comparison of carbon content in PM2.5 and PM10 collected at five measurement sites in Southern Italy. Atmosphere 2017, 8, 243. [Google Scholar] [CrossRef] [Green Version]
- Liora, N.; Poupkou, A.; Giannaros, T.M.; Kakosimos, K.E.; Stein, O.; Melas, D. Impacts of natural emission sources on particle pollution levels in Europe. Atmos. Environ. 2016, 137, 171–185. [Google Scholar] [CrossRef]
- Masson, O.; Piga, D.; Gurriaran, R.; D’Amico, D. Impact of an exceptional Saharan dust outbreak in France: PM10 and artificial radionuclides concentrations in air and in dust deposit. Atmos. Environ. 2010, 44, 2478–2486. [Google Scholar] [CrossRef]
- Querol, X.; Pey, J.; Pandolfi, M.; Alastuey, A.; Cusack, M.; Pérez, N.; Moreno, T.; Viana, M.; Mihalopoulos, N.; Kallos, G.; et al. African dust contributions to mean ambient PM10 mass-levels across the Mediterranean Basin. Atmos. Environ. 2009, 43, 4266–4277. [Google Scholar] [CrossRef]
- Bencardino, M.; Sprovieri, F.; Cofone, F.; Pirrone, N. Variability of atmospheric aerosol and ozone concentrations at marine, urban, and high-altitude monitoring stations in southern Italy during the 2007 summer Saharan dust outbreaks and wildfire episodes. J. Air Waste Manag. Assoc. 2011, 61, 952–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pey, J.; Alastuey, A.; Querol, X. PM10and PM2.5sources at an insular location in the western mediterranean by using source apportionment techniques. Sci. Total Environ. 2013, 456, 267–277. [Google Scholar] [CrossRef]
- O’Dowd, C.D.; de Leeuw, G. Marine aerosol production: a review of the current knowledge. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 1753–1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faustini, A.; Alessandrini, E.R.; Pey, J.; Perez, N.; Samoli, E.; Querol, X.; Cadum, E.; Perrino, C.; Ostro, B.; Ranzi, A.; et al. Short-term effects of particulate matter on mortality during forest fires in Southern Europe: Results of the MED-PARTICLES project. Occup. Environ. Med. 2015, 72, 323–329. [Google Scholar] [CrossRef] [Green Version]
- von Glasow, R. Atmospheric chemistry in volcanic plumes. Proc. Natl. Acad. Sci. 2010, 107, 6594–6599. [Google Scholar] [CrossRef] [Green Version]
- Helbert, J. Fumarole. In Encyclopedia of Astrobiology; Gargaud, M., Amils, R., Quintanilla, J.C., Cleaves, H.J., Irvine, W.M., Pinti, D.L., Viso, M., Eds.; Springer Berlin Heidelberg: Berlin, Germany, 2011; p. 617. ISBN 978-3-642-11274-4. [Google Scholar]
- Intergovernmental Panel on Climate Change Summary for Policymakers. In Climate Change 2013 - The Physical Science Basis; Intergovernmental Panel on Climate Change (Ed.) Cambridge University Press: Cambridge, UK, 2013; pp. 1–30. ISBN 9788578110796. [Google Scholar]
- Arndt, J.; Calabrese, S.; D’Alessandro, W.; Planer-Friedrich, B. Using mosses as biomonitors to study trace element emissions and their distribution in six different volcanic areas. J. Volcanol. Geotherm. Res. 2017, 343, 220–232. [Google Scholar] [CrossRef]
- Bagnato, E.; Aiuppa, A.; Andronico, D.; Cristaldi, A.; Liotta, M.; Brusca, L.; Miraglia, L. Leachate analyses of volcanic ashes from Stromboli volcano: A proxy for the volcanic gas plume composition? J. Geophys. Res. Atmos. 2011, 116, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, S.; Aiuppa, A.; Allard, P.; Bagnato, E.; Bellomo, S.; Brusca, L.; D’Alessandro, W.; Parello, F. Atmospheric sources and sinks of volcanogenic elements in a basaltic volcano (Etna, Italy). Geochim. Cosmochim. Acta 2011, 75, 7401–7425. [Google Scholar] [CrossRef]
- Chouet, B.; Dawson, P.; Ohminato, T.; Martini, M.; Saccorotti, G.; Giudicepietro, F.; De Luca, G.; Milana, G.; Scarpa, R. Source mechanisms of explosions at Stromboli Volcano, Italy, determined from moment-tensor inversions of very-long-period data. J. Geophys. Res. Solid Earth 2003, 108, ESE 7-1–ESE 7-25. [Google Scholar] [CrossRef]
- Castagna, J.; Bencardino, M.; D’Amore, F.; Esposito, G.; Pirrone, N.; Sprovieri, F. Atmospheric mercury species measurements across the Western Mediterranean region: Behaviour and variability during a 2015 research cruise campaign. Atmos. Environ. 2018, 173, 108–126. [Google Scholar] [CrossRef]
- Pirrone, N.; Ferrara, R.; Hedgecock, I.M.; Kallos, G.; Mamane, Y.; Munthe, J.; Pacyna, J.M.; Pytharoulis, I.; Sprovieri, F.; Voudouri, A.; et al. Dynamic processes of mercury over the Mediterranean region: Results from the Mediterranean Atmospheric Mercury Cycle System (MAMCS) project. Atmos. Environ. 2003, 37, 21–39. [Google Scholar] [CrossRef]
- Chester, D.K.; Duncan, A.M.; Guest, J.E.; Kilburn, C.R.J. Mount Etna; Springer: Dordrecht, The Netherlands, 1986; ISBN 978-94-010-8309-6. [Google Scholar]
- Finizola, A.; Sortino, F.; Lénat, J.F.; Aubert, M.; Ripepe, M.; Valenza, M. The summit hydrothermal system of Stromboli. New insights from self-potential, temperature, CO2 and fumarolic fluid measurements, with structural and monitoring implications. Bull. Volcanol. 2003, 65, 486–504. [Google Scholar] [CrossRef] [Green Version]
- Italiano, F.; De Santis, A.; Favali, P.; Rainone, M.; Rusi, S.; Signanini, P.; Italiano, F.; De Santis, A.; Favali, P.; Rainone, M.L.; et al. The Marsili Volcanic Seamount (Southern Tyrrhenian Sea): A Potential Offshore Geothermal Resource. Energies 2014, 7, 4068–4086. [Google Scholar] [CrossRef]
- Trua, T.; Serri, G.; Marani, M.; Renzulli, A.; Gamberi, F. Volcanological and petrological evolution of Marsili Seamount (southern Tyrrhenian Sea). J. Volcanol. Geotherm. Res. 2002, 114, 441–464. [Google Scholar] [CrossRef]
- Caratori Tontini, F.; Cocchi, L.; Muccini, F.; Carmisciano, C.; Marani, M.; Bonatti, E.; Ligi, M.; Boschi, E. Potential-field modeling of collapse-prone submarine volcanoes in the southern Tyrrhenian Sea (Italy). Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef]
- Dekov, V.M.; Kamenov, G.D.; Savelli, C.; Stummeyer, J. Anthropogenic Pb component in hydrothermal ochres from Marsili Seamount (Tyrrhenian Sea). Mar. Geol. 2006, 229, 199–208. [Google Scholar] [CrossRef]
- Chiodini, G.; Avino, R.; Brombach, T.; Caliro, S.; Cardellini, C.; De Vita, S.; Frondini, F.; Granirei, D.; Marotta, E.; Ventura, G. Fumarolic and diffuse soil degassing west of Mount Epomeo, Ischia, Italy. J. Volcanol. Geotherm. Res. 2004, 133, 291–309. [Google Scholar] [CrossRef]
- Italiano, F.; Nuccio, P.M. Geochemical investigations of submarine volcanic exhalations to the east of Panarea, Aeolian Islands, Italy. J. Volcanol. Geotherm. Res. 1991, 46, 125–141. [Google Scholar] [CrossRef]
- Caracausi, A.; Ditta, M.; Italiano, F.; Longo, M.; Nuccio, P.M.; Paonita, A.; Rizzo, A. Changes in fluid geochemistry and physico-chemical conditions of geothermal systems caused by magmatic input: The recent abrupt outgassing off the island of Panarea (Aeolian Islands, Italy). Geochim. Cosmochim. Acta 2005, 69, 3045–3059. [Google Scholar] [CrossRef]
- Cavalli, F.; Viana, M.; Yttri, K.E.; Genberg, J.; Putaud, J.P. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: The EUSAAR protocol. Atmos. Meas. Tech. 2010, 3, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Querol, X.; Alastuey, A.; Rodriguez, S.; Plana, F.; Ruiz, C.R.; Cots, N.; Massagué, G.; Puig, O. PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmos. Environ. 2001, 35, 6407–6419. [Google Scholar] [CrossRef]
- Amato, F.; Pandolfi, M.; Escrig, A.; Querol, X.; Alastuey, A.; Pey, J.; Perez, N.; Hopke, P.K.K. Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2. Atmos. Environ. 2009, 43, 2770–2780. [Google Scholar] [CrossRef]
- Salmatonidis, A.; Ribalta, C.; Sanfélix, V.; Bezantakos, S.; Biskos, G.; Vulpoi, A.; Simion, S.; Monfort, E.; Viana, M. Workplace Exposure to Nanoparticles during Thermal Spraying of Ceramic Coatings. Ann. Work Expo. Health 2019, 63, 91–106. [Google Scholar] [CrossRef]
- Salmatonidis, A.; Viana, M.; Pérez, N.; Alastuey, A.; de la Fuente, G.F.; Angurel, L.A.; Sanfélix, V.; Monfort, E. Nanoparticle formation and emission during laser ablation of ceramic tiles. J. Aerosol Sci. 2018, 126, 152–168. [Google Scholar] [CrossRef] [Green Version]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics; From Air Pollution to Climate Change; John Wiley & Sons: New York, NY, USA, 2006; ISBN 978-0-471-72018-8. [Google Scholar]
- Mason, B. Principles of geochemistry, 3rd ed.; JohnWiley&Sons, Inc.: New York, NY, USA, 1966. [Google Scholar]
- Chow, J.C.; Watson, J.G.; Edgerton, S.A.; Vega, E. Chemical composition of PM2.5 and PM10 in Mexico City during winter 1997. Sci. Total. Environ. 2002, 287, 177–201. [Google Scholar] [CrossRef]
- Robinson, A.L.; Grieshop, A.P.; Donahue, N.M.; Hunt, S.W. Updating the conceptual model for fine particle mass emissions from combustion systems. J. Air Waste Manag. Assoc. 2010, 60, 1204–1222. [Google Scholar] [CrossRef]
- Roy, A.A.; Wagstrom, K.M.; Adams, P.J.; Pandis, S.N.; Robinson, A.L. Quantification of the effects of molecular marker oxidation on source apportionment estimates for motor vehicles. Atmos. Environ. 2011, 45, 3132–3140. [Google Scholar] [CrossRef]
- Turpin, B.J.; Lim, H.-J. Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass. Aerosol Sci. Technol. 2001, 35, 602–610. [Google Scholar] [CrossRef]
- Cheung, K.; Daher, N.; Kam, W.; Shafer, M.M.; Ning, Z.; Schauer, J.J.; Sioutas, C. Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10–2.5) in the Los Angeles area. Atmos. Environ. 2011, 45, 2651–2662. [Google Scholar] [CrossRef]
- Mkoma, S.L.; Maenhaut, W.; Chi, X.; Wang, W.; Raes, N. Characterisation of PM10 atmospheric aerosols for the wet season 2005 at two sites in East Africa. Atmos. Environ. 2009, 43, 631–639. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F.; Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; et al. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077, (Hybrid Single-Particle Lagrangian Integrated Trajectories model). Available online: http://ready.arl.noaa.gov/HYSPLIT.php (accessed on 5 June 2018). [CrossRef]
- Pérez, C.; Nickovic, S.; Pejanovic, G.; Baldasano, J.M.; Özsoy, E. Interactive dust-radiation modeling: A step to improve weather forecasts. J. Geophys. Res. Atmos. 2006, 111. (BSC Dust Regional Atmospheric Model). Available online: www.bsc.es/projects/earthscience/DREAM/ (accessed on 5 June 2018). [CrossRef] [Green Version]
- Allard, P.; Aiuppa, A.; Loyer, H.; Carrot, F.; Gaudry, A.; Pinte, G.; Michel, A.; Dongarrà, G. Acid gas and metal emission rates during long-lived basalt degassing at Stromboli volcano. Geophys. Res. Lett. 2000, 27, 1207–1210. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Laussac, S.; Piazzola, J.; Tedeschi, G.; Yohia, C.; Canepa, E.; Rizza, U.; Van Eijk, A.M.J. Development of a fetch dependent sea-spray source function using aerosol concentration measurements in the North-Western Mediterranean. Atmos. Environ. 2018, 193, 177–189. [Google Scholar] [CrossRef]
- Mather, T.A.; Oppenheimer, C.; Allen, A.G.; McGonigle, A.J.S. Aerosol chemistry of emissions from three contrasting volcanoes in Italy. Atmos. Environ. 2004, 38, 5637–5649. [Google Scholar] [CrossRef]
- Aiuppa, A.; Dongarrà, G.; Valenza, M.; Federico, C.; Pecoraino, G. Degassing of Trace Volatile Metals During The 2001 Eruption of Etna. In Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 2003; Volume 139, pp. 41–54. ISBN 9781118668542. [Google Scholar]
- Allen, A.G.; Mather, T.A.; McGonigle, A.J.S.; Aiuppa, A.; Delmelle, P.; Davison, B.; Bobrowski, N.; Oppenheimer, C.; Pyle, D.M.; Inguaggiato, S. Sources, size distribution, and downwind grounding of aerosols from Mount Etna. J. Geophys. Res. Atmos. 2006, 111, 1–10. [Google Scholar] [CrossRef]
- Bagnato, E.; Aiuppa, A.; Parello, F.; Calabrese, S.; D’Alessandro, W.; Mather, T.A.; McGonigle, A.J.S.; Pyle, D.M.; Wängberg, I. Degassing of gaseous (elemental and reactive) and particulate mercury from Mount Etna volcano (Southern Italy). Atmos. Environ. 2007, 41, 7377–7388. [Google Scholar] [CrossRef]
- Moreno, T.; Querol, X.; Castillo, S.; Alastuey, A.; Cuevas, E.; Herrmann, L.; Mounkaila, M.; Elvira, J.; Gibbons, W. Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor. Chemosphere 2006, 65, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Reimann, C.; De Caritat, P. Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environ. Sci. Technol. 2000, 34, 5084–5091. [Google Scholar] [CrossRef]
- Aiuppa, A.; Allard, P.; D’Alessandro, W.; Michel, A.; Parello, F.; Treuil, M.; Valenza, M. Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily). Geochim. Cosmochim. Acta 2000, 64, 1827–1841. [Google Scholar] [CrossRef]
- Piazzola, J.; Mihalopoulos, N.; Canepa, E.; Tedeschi, G.; Prati, P.; Zarmpas, P.; Bastianini, M.; Missamou, T.; Cavaleri, L. Characterization of aerosols above the Northern Adriatic Sea: Case studies of offshore and onshore wind conditions. Atmos. Environ. 2016, 132, 153–162. [Google Scholar] [CrossRef]
- Marani, M.P.; Gamberi, F.; Savelli, C. Shallow-water polymetallic sulfide deposits in the Aeolian island arc. Geology 1997, 25, 815–818. [Google Scholar] [CrossRef]
- Savelli, C.; Marani, M.; Gamberi, F. Geochemistry of metalliferous, hydrothermal deposits in the Aeolian arc (Tyrrhenian Sea). J. Volcanol. Geotherm. Res. 1999, 88, 305–323. [Google Scholar] [CrossRef]
- Viana, M.; Kuhlbusch, T.A.J.; Querol, X.; Alastuey, A.; Harrison, R.M.; Hopke, P.K.; Winiwarter, W.; Vallius, M.; Szidat, S.; Prévôt, A.S.H.; et al. Source apportionment of particulate matter in Europe: A review of methods and results. J. Aerosol Sci. 2008, 39, 827–849. [Google Scholar] [CrossRef]
Variable | Factor1 | Factor2 | Factor3 | Factor4 | Factor5 | Factor6 |
---|---|---|---|---|---|---|
PMx | 0.5 | 0.5 | 0.3 | 0.2 | 0.6 | −0.3 |
OC | 0.8 | 0.2 | 0.1 | 0.2 | 0.4 | 0.2 |
EC | 0.9 | 0.2 | 0.2 | −0.1 | 0.0 | −0.1 |
NH4+ | −0.1 | −0.1 | −0.5 | 0.2 | 0.8 | 0.0 |
Al | 0.0 | 0.9 | 0.0 | 0.2 | 0.2 | −0.4 |
Fe | 0.4 | 0.8 | 0.3 | 0.1 | 0.2 | −0.1 |
Na | 0.1 | 0.2 | 0.9 | −0.2 | −0.2 | 0.0 |
Cl | −0.1 | 0.2 | 0.7 | −0.1 | −0.2 | −0.6 |
Ca | 0.2 | 0.2 | 0.0 | 0.9 | 0.1 | 0.0 |
Mg | 0.1 | 0.6 | 0.7 | 0.0 | 0.1 | −0.2 |
P | 0.0 | 0.2 | −0.1 | 1.0 | 0.1 | 0.1 |
nss-SO42− | 0.1 | 0.3 | −0.1 | 0.1 | 0.9 | −0.2 |
NO3- | 0.3 | 0.0 | 0.9 | -0.1 | −0.3 | 0.0 |
V | 0.4 | 0.2 | −0.4 | -0.2 | 0.7 | 0.0 |
Cr | 0.1 | 0.8 | 0.5 | -0.1 | 0.0 | 0.2 |
Mn | 0.7 | 0.6 | −0.2 | 0.2 | 0.0 | 0.2 |
Zn | 0.1 | −0.1 | −0.2 | 1.0 | 0.0 | 0.1 |
As | 0.8 | −0.3 | 0.2 | 0.2 | 0.2 | 0.1 |
Sb | 1.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 |
REEs | 0.7 | −0.1 | 0.0 | 0.0 | −0.1 | 0.6 |
Pb | 0.9 | 0.3 | 0.0 | 0.1 | 0.0 | 0.3 |
Zr | 0.3 | −0.1 | −0.2 | 0.2 | −0.3 | 0.9 |
Eigenvalues | 5.7 | 3.8 | 3.7 | 3.1 | 2.8 | 2.1 |
%Var | 25.9 | 17.5 | 17.0 | 14.3 | 12.8 | 9.4 |
%Cum | 25.9 | 43.4 | 60.4 | 74.7 | 87.5 | 96.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moretti, S.; Salmatonidis, A.; Querol, X.; Tassone, A.; Andreoli, V.; Bencardino, M.; Pirrone, N.; Sprovieri, F.; Naccarato, A. Contribution of Volcanic and Fumarolic Emission to the Aerosol in Marine Atmosphere in the Central Mediterranean Sea: Results from Med-Oceanor 2017 Cruise Campaign. Atmosphere 2020, 11, 149. https://doi.org/10.3390/atmos11020149
Moretti S, Salmatonidis A, Querol X, Tassone A, Andreoli V, Bencardino M, Pirrone N, Sprovieri F, Naccarato A. Contribution of Volcanic and Fumarolic Emission to the Aerosol in Marine Atmosphere in the Central Mediterranean Sea: Results from Med-Oceanor 2017 Cruise Campaign. Atmosphere. 2020; 11(2):149. https://doi.org/10.3390/atmos11020149
Chicago/Turabian StyleMoretti, Sacha, Apostolos Salmatonidis, Xavier Querol, Antonella Tassone, Virginia Andreoli, Mariantonia Bencardino, Nicola Pirrone, Francesca Sprovieri, and Attilio Naccarato. 2020. "Contribution of Volcanic and Fumarolic Emission to the Aerosol in Marine Atmosphere in the Central Mediterranean Sea: Results from Med-Oceanor 2017 Cruise Campaign" Atmosphere 11, no. 2: 149. https://doi.org/10.3390/atmos11020149
APA StyleMoretti, S., Salmatonidis, A., Querol, X., Tassone, A., Andreoli, V., Bencardino, M., Pirrone, N., Sprovieri, F., & Naccarato, A. (2020). Contribution of Volcanic and Fumarolic Emission to the Aerosol in Marine Atmosphere in the Central Mediterranean Sea: Results from Med-Oceanor 2017 Cruise Campaign. Atmosphere, 11(2), 149. https://doi.org/10.3390/atmos11020149