Analysis of Volatile Organic Compounds during the OCTAVE Campaign: Sources and Distributions of Formaldehyde on Reunion Island
Abstract
:1. Introduction
2. Material and Methods
2.1. Meteorological Conditions and Sampling Sites
2.2. Instrumentation
2.2.1. PTR-MS
2.2.2. Additional Measurements
2.3. CKB Calculation to Estimate Primary and Secondary Sources of Formaldehyde at Maido Receptor Site
2.3.1. Estimation of the Primary Anthropogenic and Biogenic Contributions to HCHO
Primary Anthropogenic Contribution
Primary Biogenic Contribution
2.3.2. Estimation of the Secondary Anthropogenic and Biogenic Contributions to HCHO
Secondary Anthropogenic Contribution
Secondary Biogenic Contributions
2.3.3. Transport Time Estimation
Anthropogenic Transport Time
Biogenic Transport Time
2.4. Parameters of the Positive Matrix Factorization
3. Results
3.1. Diurnal Variation in VOC Species
3.2. Estimation of Formaldehyde Sources with CKB Method
3.3. Positive Matrix Factorization Analysis
3.3.1. VOCs Specifications in PMF
3.3.2. Primary Biogenic Factor
3.3.3. Secondary Biogenic Factor
3.3.4. Primary Anthropogenic/Solvents Factor
3.3.5. Primary Anthropogenic/Combustion
3.3.6. Background
3.3.7. HCHO Sources by the PMF
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Uncertainties Calculation
Appendix A.1. Estimation of PTR-MS Uncertainties
Appendix A.1.1. BIRA PTR-MS
Appendix A.1.2. LSCE PTR-MS
Appendix A.2. Estimation of Aerolaser Uncertainties
Appendix B. Chemical-Kinetics-Based Calculation for Formaldehyde Sources
Appendix B.1. Estimation of Primary and Anthropogenic/Biogenic Sources of HCHO
Appendix B.1.1. Anthropogenic Emissions
Appendix B.1.2. Biogenic Emissions
Constants (cm3·molecules−1·s−1) | Reaction with OH | Reaction with O3 |
---|---|---|
ka | 55.0 × 10−12 | 8.63 × 10−17 |
kb | 80.2 × 10−12 | 1.5 × 10−17 |
kc | 215 × 10−12 | 47.6 × 10−17 |
kd | 117 × 10−12 | 8.27 × 10−17 |
ke | 171 × 10−12 | 19.8 × 10−17 |
k (calculated) | kOH = 1.625 × 10−12 | kO3 = 2.586 × 10−16 |
Appendix B.2. Estimation of Secondary and Anthropogenic/Biogenic Sources of HCHO
Appendix B.2.1. Anthropogenic Emissions
Appendix B.2.2. Biogenic Emissions
Appendix B.3. Transport Time Estimation
Appendix B.3.1. Anthropogenic Transport Time
Appendix B.3.2. Biogenic Transport Time
Appendix B.4. OH Radical Concentration
Appendix B.4.1. Anthropogenic Emissions
Appendix B.4.2. Biogenic Emissions
Appendix C. Determination of the Optimal Factor with the PMF Analysis
References
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 9781118947401. [Google Scholar]
- Monks, P.S.; Granier, C.; Fuzzi, S.; Stohl, A.; Williams, M.L.; Akimoto, H.; Amann, M.; Baklanov, A.; Baltensperger, U.; Bey, I.; et al. Atmospheric composition change-global and regional air quality. Atmos. Environ. 2009, 43, 5268–5350. [Google Scholar] [CrossRef] [Green Version]
- Matsunaga, S.; Mochida, M.; Kawamura, K. Growth of organic aerosols by biogenic semi-volatile carbonyls in the forestal atmosphere. Atmos. Environ. 2003, 37, 2045–2050. [Google Scholar] [CrossRef]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef] [PubMed]
- Kesselmeier, J.; Staudt, M. An overview on Emission, Physiology and Ecology. J. Atmos. Chem. 1999, 33, 23–88. [Google Scholar] [CrossRef]
- Kalogridis, A.-C.; Gros, V.; Bonsang, B.; Sarda-Esteve, R.; Genard, A.-C.; Boissard, C.; Fernandez, C.; Ormeño, E.; Bonnaire, N.; Baisnée, D.; et al. Étude des composés organiques volatils biogéniques émis par une forêt méditerranéenne. La Météorologie 2016, 93, 42–49. [Google Scholar] [CrossRef]
- Kesselmeier, J.; Kuhn, U.; Wolf, A.; Andreae, M.O.; Ciccioli, P.; Brancaleoni, E.; Frattoni, M.; Guenther, A.; Greenberg, J.; De Castro Vasconcellos, P.; et al. Atmospheric volatile organic compound (VOC) at a remote tropical forest site in central Amazonia. Atmos. Environ. 2000, 34, 4063–4072. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, C.; Zhou, J. Determination and Characteristic Analysis of Atmospheric Non-Methane Hydrocarbons in a Regional Hub City of North China Plain Determination and Characteristic Analysis of Atmospheric Non-Methane Hydrocarbons in a Regional Hub City of North China Plain. IOP Conf. Ser. Earth Environ. Sci. 2019, 223, 012052. [Google Scholar] [CrossRef]
- Jaars, K.; Beukes, J.P.; Van Zyl, P.G.; Venter, A.D.; Josipovic, M.; Pienaar, J.J.; Vakkari, V.; Aaltonen, H.; Laakso, H.; Kulmala, M.; et al. Ambient aromatic hydrocarbon measurements at Welgegund, South Africa. Atmos. Chem. Phys. 2014, 14, 7075–7089. [Google Scholar] [CrossRef] [Green Version]
- Borbon, A.; Gilman, J.B.; Kuster, W.C.; Grand, N.; Chevaillier, S.; Colomb, A.; Dolgorouky, C.; Gros, V.; Lopez, M.; Sarda-Esteve, R.; et al. Emission ratios of anthropogenic volatile organic compounds in northern mid-latitude megacities: Observations versus emission inventories in Los Angeles and Paris. J. Geophys. Res. Atmos. 2013, 118, 2041–2057. [Google Scholar] [CrossRef]
- Salameh, T.; Afif, C.; Sauvage, S.; Borbon, A.; Locoge, N. Speciation of non-methane hydrocarbons (NMHCs) from anthropogenic sources in Beirut, Lebanon. Environ. Sci. Pollut. Res. 2014, 21, 10867–10877. [Google Scholar] [CrossRef]
- Keita, S.; Liousse, C.; Yoboué, V.; Dominutti, P.; Guinot, B.; Assamoi, E.-M.; Borbon, A.; Haslett, S.L.; Bouvier, L.; Colomb, A.; et al. Particle and VOC emission factor measurements for anthropogenic sources in West Africa. Atmos. Chem. Phys. 2018, 18, 7691–7708. [Google Scholar] [CrossRef] [Green Version]
- Seco, R.; Peñuelas, J.; Filella, I. Short-chain oxygenated VOCs: Emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmos. Environ. 2007, 41, 2477–2499. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans & International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; World Health Organization: Lyon, France, 2006; Volume 88. [Google Scholar]
- US Environmental Protection Agency. 2014 National Emissions Inventory, Version 2; Technical Support Document; US Environmental Protection Agency: Washington, DC, USA, 2018.
- Cooke, M.C.; Utembe, S.R.; Carbajo, P.G.; Archibald, A.T.; Orr-Ewing, A.J.; Jenkin, M.E.; Derwent, R.G.; Lary, D.J.; Shallcross, D.E. Impacts of formaldehyde photolysis rates on tropospheric chemistry. Atmos. Sci. Lett. 2010, 11, 33–38. [Google Scholar] [CrossRef]
- Friedfeld, S.; Fraser, M.; Ensor, K.; Tribble, S.; Rehle, D.; Leleux, D.; Tittel, F. Statistical analysis of primary and secondary atmospheric formaldehyde. Atmos. Environ. 2002, 36, 4767–4775. [Google Scholar] [CrossRef]
- Rasmussen, R.; Went, F.W. Volatile organic material of plant origin in the atmosphere. Proc. Natl. Acad. Sci. USA 1965, 53, 215. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Rohrer, F.; Brauers, T.; Hofzumahaus, A.; Lu, K.; Shao, M.; Zhang, Y.H.; Wahner, A. Modeling of HCHO and CHOCHO at a semi-rural site in southern China during the PRIDE-PRD2006 campaign. Atmos. Chem. Phys. 2014, 14, 12291–12305. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, G.M.; Kaiser, J.; Hanisco, T.F.; Keutsch, F.N.; De Gouw, J.A.; Gilman, J.B.; Graus, M.; Hatch, C.D.; Holloway, J.; Horowitz, L.W.; et al. Formaldehyde production from isoprene oxidation across NOx regimes. Atmos. Chem. Phys. 2016, 16, 2597–2610. [Google Scholar] [CrossRef] [Green Version]
- Baray, J.L.; Courcoux, Y.; Keckhut, P.; Portafaix, T.; Tulet, P.; Cammas, J.P.; Hauchecorne, A.; Godin Beekmann, S.; De Mazière, M.; Hermans, C.; et al. Maïdo observatory: A new high-altitude station facility at Reunion Island (21 S, 55 E) for long-term atmospheric remote sensing and in situ measurements. Atmos. Meas. Tech. 2013, 6, 2865–2877. [Google Scholar] [CrossRef] [Green Version]
- Norris, G. EPA Positive Matrix Factorization (PMF) 3.0 Fundamentals & User Guide; Environmental Protection Agency: Washington, DC, USA, 2008. Available online: http://www.epa.gov/heasd/products/pmf/pmf.html (accessed on 12 December 2018).
- Yuan, B.; Shao, M.; De Gouw, J.; Parrish, D.D.; Lu, S.; Wang, M.; Zeng, L.; Zhang, Q.; Song, Y.; Zhang, J.; et al. Volatile organic compounds (VOCs) in urban air: How chemistry affects the interpretation of positive matrix factorization (PMF) analysis. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Yuan, Z.; Kai, A.; Lau, H.; Shao, M.; Louie, P.K.K.; Liu, S.C.; Zhu, T.; Yuan, C.; Lau, A.K.H.; Shao, M.; et al. Source analysis of volatile organic compounds by positive matrix factorization in urban and rural environments in Beijing. J. Geophys. Res 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Vlasenko, A.; Slowik, J.G.; Bottenheim, J.W.; Brickell, P.C.; Chang, R.Y.W.; Maedonald, A.M.; Shantz, N.C.; Sjostedt, S.J.; Wiebe, H.A.; Leaitch, W.R.; et al. Measurements of VOCs by proton transfer reaction mass spectrometry at a rural Ontario site: Sources and correlation to aerosol composition. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Michoud, V.; Sciare, J.; Sauvage, S.; Dusanter, S.; Léonardis, T.; Gros, V.; Kalogridis, C.; Zannoni, N.; Féron, A.; Petit, J.-E.; et al. Organic carbon at a remote site of the western Mediterranean Basin: Sources and chemistry during the ChArMEx SOP2 field experiment. Atmos. Chem. Phys. 2017, 17, 8837–8865. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.; Hawas, O.; Hawker, D.; Vowles, P.; Cohen, D.D.; Stelcer, E.; Simpson, R.; Golding, G.; Christensen, E. Using multiple type composition data and wind data in PMF analysis to apportion and locate sources of air pollutants. Atmos. Environ. 2011, 45, 439–449. [Google Scholar] [CrossRef]
- Brémaud, P..; Taupin, F. Cloud influence on ozone diurnal cycle in the marine boundary layer at Réunion Island. Atmos. Res. 1998, 47–48, 285–298. [Google Scholar]
- Duflot, V.; Tulet, P.; Flores, O.; Barthe, C.; Colomb, A.; Deguillaume, L.; Vaïtilingom, M.; Perring, A.; Huffman, A.; Hernandez, M.T.; et al. Preliminary results from the FARCE 2015 campaign: Multidisciplinary study of the forests-gases-aerosols-clouds system on the tropical island of La Réunion. Atmos. Chem. Phys. Discuss. 2019, 19, 10591–10618. [Google Scholar]
- Lesouëf, D.; Gheusi, F.; Delmas, R.; Escobar, J.; Lesouëf, D.; Delmas, R. Numerical simulations of local circulations and pollution transport over Reunion Island. Eur. Geosci. Union 2011, 29, 53–69. [Google Scholar] [CrossRef] [Green Version]
- Guilpart, E.; Vimeux, F.; Evan, S.; Brioude, J.; Metzger, J.-M.; Barthe, C.; Risi, C.; Cattani, O. The isotopic composition of near-surface water vapor at the Maïdo observatory (Reunion Island, southwestern Indian Ocean) documents the controls of the humidity of the subtropical troposphere. J. Geophys. Res. Atmos. 2017, 122, 9628–9650. [Google Scholar] [CrossRef]
- Clain, G.; Baray, J.-L.; Delmas, R.; Keckhut, P.; Cammas, J.-P. A lagrangian approach to analyse the tropospheric ozone climatology in the tropics: Climatology of stratosphere–troposphere exchange at Reunion Island. Atmos. Environ. 2010, 44, 968–975. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, C.; Li, J.; Jiang, H.; Chu, Y. Proton Transfer Reaction Mass Spectrometry (PTR-MS). In Mass Spectrometry Handbook; John Wiley & Sons, Inc.: Hoboken, NJ, USA; Volume 109, pp. 605–630. ISBN 9780470536735.
- Blake, R.S.; Monks, P.S.; Ellis, A.M. Proton-Transfer Reaction Mass Spectrometry. Chem. Rev. 2009, 109, 861–896. [Google Scholar] [CrossRef]
- Holzinger, R.; Acton, W.J.F.; Bloss, W.J.; Breitenlechner, M.; Crilley, L.R.; Dusanter, S.; Gonin, M.; Gros, V.; Keutsch, F.N.; Kiendler-Scharr, A.; et al. Validity and limitations of simple reaction kinetics to calculate concentrations of organic compounds from ion counts in PTR-MS. Atmos. Meas. Tech. Discuss. 2019, 12, 6193–6208. [Google Scholar] [CrossRef] [Green Version]
- Tani, A.; Hayward, S.; Hewitt, C. Measurement of monoterpenes and related compounds by proton transfer reaction-mass spectrometry (PTR-MS). Int. J. Mass Spectrom. 2003, 223–224, 561–578. [Google Scholar] [CrossRef]
- Laffineur, Q.; Aubinet, M.; Schoon, N.; Amelynck, C.; Müller, J.-F.; Dewulf, J.; Van Langenhove, H.; Steppe, K.; Šimpraga, M.; Heinesch, B. Isoprene and monoterpene emissions from a mixed temperate forest. Atmos. Environ. 2011, 45, 3157–3168. [Google Scholar] [CrossRef] [Green Version]
- Nash, T. The Colorimetric Estimation of Formaldehyde by Means of the Hantzsch Reaction. Biochem. J. 1953, 55, 416–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Still, T.J.; Al-Haider, S.; Seakins, P.W.; Sommariva, R.; Stanton, J.C.; Mills, G.; Penkett, S.A. Ambient formaldehyde measurements made at a remote marine boundary layer site during the NAMBLEX campaign-a comparison of data from chromatographic and modified Hantzsch techniques. Atmos. Chem. Phys. 2006, 6, 2711–2726. [Google Scholar] [CrossRef] [Green Version]
- Pollack, I.B.; Lerner, B.M.; Ryerson, T.B.; Pollack, I.B.; Lerner, B.M.; Ryerson, T.B. Evaluation of ultraviolet light-emitting diodes for detection of atmospheric NO2 by photolysis-chemiluminescence. J. Atmos Chem. 2010, 65, 111–125. [Google Scholar] [CrossRef]
- Parrish, D.D.; Stohl, A.; Forster, C.; Atlas, E.L.; Blake, D.R.; Goldan, P.D.; Kuster, W.C.; De Gouw, J.A.; Parrish, C. Effects of mixing on evolution of hydrocarbon ratios in the troposphere. J. Geophys. Res 2007, 112, 10–34. [Google Scholar] [CrossRef] [Green Version]
- Fried, A.; Mckeen, S.; Sewell, S.; Harder, J.; Henry, B.; Goldan, P.; Kuster, W.; Williams, E.; Baumann, K.; Shetter, R.; et al. Photochemistry of formaldehyde during the 1993 Tropospheric OH Photochemistry Experiment. J. Geophys. Res. 1997, 102, 6283–6296. [Google Scholar] [CrossRef]
- White, M.L.; Russo, R.S.; Zhou, Y.; Ambrose, J.L.; Haase, K.; Frinak, E.K.; Varner, R.K.; Wingenter, O.W.; Mao, H.; Talbot, R.; et al. Atmospheric Chemistry and Physics Are biogenic emissions a significant source of summertime atmospheric toluene in the rural Northeastern United States? Atmos. Chem. Phys. 2009, 9, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Possanzini, M.; Di Palo, V.; Cecinato, A. Sources and photodecomposition of formaldehyde and acetaldehyde in Rome ambient air. Atmos. Environ. 2002, 36, 3195–3201. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, Y.; Liang, P.; Xu, Z.; Liu, J.; Zhang, H.; Wang, X.; Gao, J.; Wang, S.; Chai, F.; et al. Atmospheric BTEX and carbonyls during summer seasons of 2008–2010 in Beijing. Atmos. Environ. 2012, 59, 186–191. [Google Scholar] [CrossRef]
- Atkinson, R.; Arey, J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmos. Environ. 2003, 37, 197–219. [Google Scholar] [CrossRef]
- Roberts, J.M.; Fehsenfeld, F.C.; Liu, S.C.; Bollinger, M.J.; Hahn, C.; Albritton, D.L.; Sievers, R.E. Measurements of aromatic hydrocarbon ratios and NOx concentrations in the rural troposphere: Observation of air mass photochemical aging and NOx removal. Atmos. Environ. 1984, 18, 2421–2432. [Google Scholar] [CrossRef]
- Winters, A.J.; Adams, M.A.; Bleby, T.M.; Rennenberg, H.; Steigner, D.; Steinbrecher, R.; Kreuzwieser, J. Emissions of isoprene, monoterpene and short-chained carbonyl compounds from Eucalyptus spp. in southern Australia. Atmos. Environ. 2009, 43, 3035–3043. [Google Scholar] [CrossRef]
- Kesselmeier, J.; Bode, K.; Hofmann, U.; Müller, H.; Schäfer, L.; Wolf, A.; Ciccioli, P.; Brancaleoni, E.; Cecinato, A.; Frattoni, M.; et al. Emission of short chained organic acids, aldehydes and monoterpenes from Quercus ilex L. and Pinus pinea L. in relation to physiological activities, carbon budget and emission algorithms. Atmos. Environ. 1997, 31, 119–133. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Sauvage, S.; Plaisance, H.; Locoge, N.; Wroblewski, A.; Coddeville, P.; Galloo, J.C. Long term measurement and source apportionment of non-methane hydrocarbons in three French rural areas. Atmos. Environ. 2009, 43, 2430–2441. [Google Scholar] [CrossRef]
- Paatero, P.; Eberly, S.; Brown, S.G.; Norris, G.A. Methods for estimating uncertainty in factor analytic solutions. Atmos. Meas. Tech. 2014, 7, 781–797. [Google Scholar] [CrossRef] [Green Version]
- Leighton, P. Photochemistry of Air Pollution; Elsevier Science: Amsterdam, The Netherlands, 1961; p. 158. ISBN 9780323156455. [Google Scholar]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Bechara, J.; Borbon, A.; Jambert, C.; Colomb, A.; Perros, P.E. Evidence of the impact of deep convection on reactive Volatile Organic Compounds in the upper tropical troposphere during the AMMA experiment in West Africa. Atmos. Chem. Phys. 2010, 10, 10321–10334. [Google Scholar] [CrossRef] [Green Version]
- Keller, M.D.; Bellows, W.K.; Guillard, R.R.L. Dimethyl Sulfide Production in Marine Phytoplankton. ACS Publ. 1989, 167–182. [Google Scholar] [CrossRef]
- Blake, N.J.; Blake, D.R.; Wingenter, O.W.; Sive, B.C.; Kang, C.H.; Thornton, D.C.; Bandy, A.R.; Atlas, E.; Flocke, F.; Harris, J.M.; et al. Aircraft measurements of the latitudinal, vertical, and seasonal variations of NMHCs, methyl nitrate, methyl halides, and DMS during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. Atmos. 1999, 104, 21803–21817. [Google Scholar] [CrossRef]
- Holzinger, R.; Warneke, C.; Hansel, A.; Jordan, A.; Lindinger, W.; Scharffe, D.H.; Schade, G.; Crutzen, P.J. Biomass burning as a source of formaldehyde, acetaldehyde, methanol, acetone, acetonitrile, and hydrogen cyanide. Geophys. Res. Lett. 1999, 26, 1161–1164. [Google Scholar] [CrossRef]
- de Gouw, J.A.; Warneke, C.; Parrish, D.D.; Holloway, J.S.; Trainer, M.; Fehsenfeld, F.C. Emission sources and ocean uptake of acetonitrile (CH3CN) in the atmosphere. J. Geophys. Res. D Atmos. 2003, 108, 1–8. [Google Scholar] [CrossRef]
- Tuazon, E.C.; Atkinson, R. A product study of the gas-phase reaction of Isoprene with the OH radical in the presence of NOx. Int. J. Chem. Kinet. 1990, 22, 1221–1236. [Google Scholar] [CrossRef]
- Monson, R.K.; Jaeger, C.H.; Adams, W.W.; Driggers, E.M.; Silver, G.M.; Fall, R. Relationships among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol. 1992, 98, 1175–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkinson, R.; Baulch, D.L.; Cox, R.A.; Crowley, J.N.; Hampson, R.F.; Hynes, R.G.; Jenkin, M.E.; Rossi, M.J.; Troe, J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II-gas phase reactions of organic species. Atmos. Chem. Phys. 2006, 6, 3625–4055. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Lee, Y.-N.; Newman, L.; Chen, X.; Mopper, K. Tropospheric formaldehyde concentration at the Mauna Loa Observatory during the Mauna Loa Observatory Photochemistry Experiment 2. J. Geophys. Res. Atmos. 1996, 101, 14711–14719. [Google Scholar] [CrossRef]
- Neitzert, V.; Seiler, W. Measurements of formaldehyde in clean air. Geophys. Res. Lett. 1981, 8, 79–82. [Google Scholar] [CrossRef]
- de Blas, M.; Ibáñez, P.; García, J.A.; Gómez, M.C.; Navazo, M.; Alonso, L.; Durana, N.; Iza, J.; Gangoiti, G.; de Cámara, E.S. Summertime high resolution variability of atmospheric formaldehyde and non-methane volatile organic compounds in a rural background area. Sci. Total Environ. 2019, 647, 862–877. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, R.; Garzón, J.P.; Huertas, M.E.; Levy, M.; Ma, Y.; Torres-Jardón, R.; Ruiz-Suárez, L.G.; Russell, L.; Takahama, S.; et al. Measurements of formaldehyde at the U.S.–Mexico border during the Cal-Mex 2010 air quality study. Atmos. Environ. 2013, 70, 513–520. [Google Scholar] [CrossRef]
- Oku, H.; Inafuku, M.; Takamine, T.; Nagamine, M.; Saitoh, S.; Fukuta, M. Temperature threshold of isoprene emission from tropical trees, Ficus virgata and Ficus septica. Chemosphere 2014, 95, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Kotzias, D.; Konidari, C.; Sparta, C. Volatile carbonyl compounds of biogenic origin. Emission and concentration in the atmosphere. In Biogenic Volatile Organic Carbon Compounds in the Atmosphere; SPB Academic Publishing: Amsterdam, The Netherlands, 1997; pp. 67–78. [Google Scholar]
- Koppmann, R. Volatile Organic Compounds in the Atmosphere. In Volatile Organic Compounds in the Atmosphere; Blackwell Pub.: Oxford, UK, 2007; pp. 1–500. ISBN 9781405131155. [Google Scholar]
- Millet, D.B.; Guenther, A.; Siegel, D.A.; Nelson, N.B.; Singh, H.B.; de Gouw, J.A.; Warneke, C.; Williams, J.; Eerdekens, G.; Sinha, V.; et al. Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations. Atmos. Chem. Phys. 2010, 10, 3405–3425. [Google Scholar] [CrossRef] [Green Version]
- Yáñez-Serrano, A.M.; Nölscher, A.C.; Bourtsoukidis, E.; Derstroff, B.; Zannoni, N.; Gros, V.; Lanza, M.; Brito, J.; Noe, S.M.; House, E.; et al. Atmospheric mixing ratios of methyl ethyl ketone (2-butanone) in tropical, boreal, temperate and marine environments. Atmos. Chem. Phys. 2016, 16, 10965–10984. [Google Scholar] [CrossRef] [Green Version]
- Perry, R.; Gee, I.L. Vehicle emissions in relation to fuel composition. Sci. Total Environ. 1995, 169, 149–156. [Google Scholar] [CrossRef]
- Lacaux, J.P.; Loemba-Ndembi, J.; Lefeivre, B.; Cros, B.; Delmas, R. Biogenic emissions and biomass burning influences on the chemistry of the fogwater and stratiform precipitations in the African equatorial forest. Atmos. Environ. Part A. Gen. Top. 1992, 26, 541–551. [Google Scholar] [CrossRef]
- Baudic, A.; Gros, V.; Sauvage, S.; Locoge, N.; Sanchez, O.; Sarda-Estève, R.; Kalogridis, C.; Petit, J.-E.; Bonnaire, N.; Baisnée, D.; et al. Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France). Atmos. Chem. Phys. 2016, 16, 11961–11989. [Google Scholar] [CrossRef] [Green Version]
- Peters, R. The determination of terpenes in forest air. Atmos. Environ. 1994, 28, 2413–2419. [Google Scholar] [CrossRef]
- Rose, C.; Chaumerliac, N.; Deguillaume, L.; Perroux, H.; Mouchel-Vallon, C.; Leriche, M.; Patryl, L.; Armand, P. Modeling the partitioning of organic chemical species in cloud phases with CLEPS (1.1). Atmos. Chem. Phys. 2018, 18, 2225–2242. [Google Scholar] [CrossRef] [Green Version]
- Carter, W.P.L.; Atkinson, R. Development and evaluation of a detailed mechanism for the atmospheric reactions of isoprene and NOx. Int. J. Chem. Kinet. 1996, 28, 497–530. [Google Scholar] [CrossRef]
- Stroud, C.A.; Roberts, J.M.; Goldan, P.D.; Kuster, W.C.; Murphy, P.C.; Williams, E.J.; Hereid, D.; Parrish, D.; Sueper, D.; Trainer, M.; et al. Isoprene and its oxidation products, methacrolein and methylvinyl ketone, at an urban forested site during the 1999: Southern Oxidants Study. J. Geophys. Res. Atmos. 2001, 106, 8035–8046. [Google Scholar] [CrossRef] [Green Version]
Measurements | Site | Recorded Dates (DD/MM/YY) | Institution | Instrument | Limit of Detection (ppb) | Absolute Uncertainty |
---|---|---|---|---|---|---|
VOCs | Maïdo | 16/03/18–25/05/18 06/04/18–16/04/18 | BIRA LSCE | PTR-quad-MS PTR-quad-MS | 0.011–0.145 0.018–0.532 | 0.004–0.84 ppb 0.006–0.09 ppb |
Bélouve | 25/04/18–02/05/18 | LSCE | PTR-quad-MS | 0.018–0.532 | 0.009–0.08 ppb | |
Le Port | 20/04/18 (1 day) | LSCE | PTR-quad-MS | 0.018–0.532 | 0.006–0.34 ppb | |
NOX | Maïdo Bélouve Le Port | 08/03/18–10/05/18 25/04/18–02/05/18 16/04/18–24/04/18 | LACY ATMO ATMO | API Teledyne T200 UP Teledyne T200 Teledyne T200 | 5 × 10−2 0.4 0.4 | 0.5% 0.5% 0.5% |
O3 | Maïdo Bélouve Le Port | 08/03/18–10/05/18 25/04/18–02/05/18 16/04/18–24/04/18 | LACY ATMO ATMO | TEI 49i Teledyne T400 Teledyne T400 | 0.5 0.6 0.6 | 1 ppb 0.5% 0.5% |
HCHO (Aerolaser) | Maïdo Bélouve Le Port | 12/03/18–19/04/18 26/04/18–02/05/18 23/04/18–24/04/18 | LaMP LaMP LaMP | Aerolaser Aerolaser Aerolaser | 0.15 0.15 0.15 | 10.3% 10.3% 10.3% |
Meteorological parameters (temperature (T), relative humidity (RH), pressure (P), wind speed (WS), wind direction (WD)) | Maïdo Bélouve Le Port | 01/03/18–02/05/18 25/04/18–02/05/18 16/04/18–24/04/18 | BIRA ATMO ATMO | HUMICAP 180, Pt100 temperature, Vaisala PTB100 | NA NA NA | (RH ± 2%, T ± 0.2 °C, P ± 0.5 hPa, WS ± 0.17 m/s, WD ± 2.8°) |
Compounds | % Value < LOD | % Missing Values | SNR | Status |
---|---|---|---|---|
HCHO | 18% | 5% | 1.3 | Weak |
Methanol | 6% | 6% | 4.7 | Strong |
Acetaldehyde | 23% | 6% | 3 | Strong |
Acetonitrile | 0% | 0% | 10 | Strong |
Acetone | 0% | 6% | 9.1 | Strong |
acetic acid | 2% | 6% | 7 | Strong |
Dimethyl Sulfide (DMS) | 84% | 0% | 0.4 | Weak |
Isoprene | 47% | 0% | 4.4 | Strong |
Methacrolein + Methyl Vinyl Ketone (MACR + MVK) | 45% | 0% | 4.2 | Strong |
Methyl Ethyl Ketone (MEK) | 15% | 0% | 4.6 | Strong |
Benzene | 69% | 0% | 1.2 | Weak |
Monoterpenes (m/z 81) | 64% | 0% | 1.2 | Weak |
Toluene | 81% | 0% | 0.5 | Weak |
Xylenes | 72% | 0% | 0.7 | Weak |
Monoterpenes (m/z 137) | 73% | 0% | 0.7 | Weak |
Factors Other Parameters | F1 Primary Biogenic (n = 18,919) | F2 Secondary Biogenic (n = 18,919) | F3 Primary Anthropogenic/Solvents (n = 18,919) | F4 Primary Anthropogenic/Combustion (n = 18,919) | F5 Background (n = 18,919) |
---|---|---|---|---|---|
CO (n = 17,659) | 0.27 | 0.23 | 0.35 | 0.52 | 0.18 |
NOx (n = 18,785) | 0.34 | 0.63 | 0.50 | 0.37 | 0.38 |
NO2 (n = 18,812) | 0.27 | 0.58 | 0.52 | 0.34 | 0.38 |
O3 (n = 17,294) | 0.12 | 0.04 | 0.13 | 0.15 | 0.04 |
Wind speed (n = 18,638) | 0.12 | 0.09 | 0.38 | 0.34 | 0.01 |
Wind direction (n = 18,638) | 0.41 | 0.26 | 0.07 | 0.15 | 0.38 |
90 < WD < 180 (n = 7956) | 0.13 | 0.04 | 0.14 | 0.39 | 0.19 |
200 < WD < 315 (n = 6311) | 0.14 | 0.32 | 0.12 | 0.04 | 0.09 |
Solar radiation (n = 18,638) | 0.71 | 0.62 | 0.24 | 0.45 | 0.28 |
Temperature (n = 18,919) | 0.63 | 0.64 | 0.35 | 0.51 | 0.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocco, M.; Colomb, A.; Baray, J.-L.; Amelynck, C.; Verreyken, B.; Borbon, A.; Pichon, J.-M.; Bouvier, L.; Schoon, N.; Gros, V.; et al. Analysis of Volatile Organic Compounds during the OCTAVE Campaign: Sources and Distributions of Formaldehyde on Reunion Island. Atmosphere 2020, 11, 140. https://doi.org/10.3390/atmos11020140
Rocco M, Colomb A, Baray J-L, Amelynck C, Verreyken B, Borbon A, Pichon J-M, Bouvier L, Schoon N, Gros V, et al. Analysis of Volatile Organic Compounds during the OCTAVE Campaign: Sources and Distributions of Formaldehyde on Reunion Island. Atmosphere. 2020; 11(2):140. https://doi.org/10.3390/atmos11020140
Chicago/Turabian StyleRocco, Manon, Aurélie Colomb, Jean-Luc Baray, Crist Amelynck, Bert Verreyken, Agnès Borbon, Jean-Marc Pichon, Laetitia Bouvier, Niels Schoon, Valérie Gros, and et al. 2020. "Analysis of Volatile Organic Compounds during the OCTAVE Campaign: Sources and Distributions of Formaldehyde on Reunion Island" Atmosphere 11, no. 2: 140. https://doi.org/10.3390/atmos11020140
APA StyleRocco, M., Colomb, A., Baray, J. -L., Amelynck, C., Verreyken, B., Borbon, A., Pichon, J. -M., Bouvier, L., Schoon, N., Gros, V., Sarda-Esteve, R., Tulet, P., Metzger, J. -M., Duflot, V., Guadagno, C., Peris, G., & Brioude, J. (2020). Analysis of Volatile Organic Compounds during the OCTAVE Campaign: Sources and Distributions of Formaldehyde on Reunion Island. Atmosphere, 11(2), 140. https://doi.org/10.3390/atmos11020140