Correction of Light Scattering-Based Total Suspended Particulate Measurements through Machine Learning
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Monitoring Instruments and Data Collection
2.2. Model Development and Data Preparation
3. Results and Discussion
3.1. Performance of Machine Learning Models in Predicting TSP
3.2. Partial Dependence of Influencing Factors
3.3. Derivation of Scattering Hygroscopic Growth Curve
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chow, J.C. Measurement Methods to Determine Compliance with Ambient Air-Quality Standards for Suspended Particles. Air Waste Manag. Assoc. 1995, 45, 320–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaklevic, J.M.; Gatti, R.C.; Goulding, F.S.; Loo, B.W. A beta-gage method applied to aerosol samples. Environ. Sci. Technol. 1981, 15, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Patashnick, H.; Rupprecht, E.G. Continuous PM-10 measurements using the tapered element oscillating microbalance. Air Waste Manag. Assoc. 1991, 41, 1079–1083. [Google Scholar] [CrossRef]
- Black, D.L.; McQuay, M.Q.; Bonin, M.P. Laser-based techniques for particle-size measurement: A review of sizing methods and their industrial applications. Prog. Energy Combust. Sci. 1996, 22, 267–306. [Google Scholar] [CrossRef]
- Gebhart, J. Optical direct-reading techniques: Light intensity systems. In Aerosol Measurement: Principles, Techniques, and Applications, 2nd ed.; Baron, P., Willeke, K., Eds.; John Wiley & Sons: New York, NY, USA, 2001; pp. 419–454. [Google Scholar]
- Wang, X.L.; Chancellor, G.; Evenstad, J.; Farnsworth, J.E.; Hase, A.; Olson, G.M.; Sreenath, A.; Agarwal, J.K. A Novel Optical Instrument for Estimating Size Segregated Aerosol Mass Concentration in Real Time. Aerosol Sci. Technol. 2009, 43, 939–950. [Google Scholar] [CrossRef]
- Covert, D.S.; Charlson, R.J.; Ahlquist, N.C. A study of the relationship of chemical composition and humidity to light scattering by aerosols. J. Appl. Meteorol. 1972, 11, 968–976. [Google Scholar] [CrossRef] [Green Version]
- Tang, I.N. Chemical and size effects of hygroscopic aerosols on light scattering coefficients. J. Geophys. Res. 1996, 101, 19245–19250. [Google Scholar] [CrossRef]
- Suleiman, A.; Tight, M.R.; Quinn, A.D. Applying machine learning methods in managing urban concentrations of traffic-related particulate matter (PM10 and PM2.5). Atmos. Pollut. Res. 2018, 10, 134–144. [Google Scholar] [CrossRef]
- Zou, B.; Wang, M.; Wan, N.; Wilson, J.G.; Fang, X.; Tang, Y. Spatial modeling of PM2.5 concentrations with a multifactoral radial basis function neural network. Environ. Sci. Pollut. Res. 2015, 22, 10395–10404. [Google Scholar] [CrossRef]
- Sayegh, A.; Tate, J.E.; Ropkins, K. Understanding how roadside concentrations of NOx are influenced by the background levels, traffic density, and meteorological conditions using Boosted Regression Trees. Atmos. Environ. 2016, 127, 163–175. [Google Scholar] [CrossRef]
- CEL-712 Dust Detective Kit. Available online: https://www.casellasolutions.com/products/casella_default/cel-712-dust-detective-kit.html (accessed on 11 November 2019).
- Szymanski, W.W.; Nagy, A.; Czitrovszky, A.R. Optical particle spectrometry—Problems and prospects. J. Quant. Spectrosc. Radiat. Transfer. 2009, 110, 918–929. [Google Scholar] [CrossRef]
- Chunming, W.; Xinbiao, L.; Xiaofeng, C.; Yalong, M.; Chen, C. Application of support vector regression to predict metallogenic favourability degree. Int. J. Phys. Sci. 2010, 5, 5. [Google Scholar]
- Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Belle, J.H.; Meng, X.; Wildni, A.; Waller, L.A.; Strickland, M.J.; Liu, Y. Estimating PM2.5 Concentrations in the Conterminous United States Using the Random Forest Approach. Environ. Sci. Technol. 2017, 51, 6936–6944. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Chang, H.H.; Geng, G.; Liu, Y. An Ensemble Machine-Learning Model To Predict Historical PM2.5 Concentrations in China from Satellite Data. Environ. Sci. Technol. 2018, 52, 13260–13269. [Google Scholar] [CrossRef] [PubMed]
- Brokamp, C.; Jandarov, R.; Hossain, M.; Ryan, P. Predicting Daily Urban Fine Particulate Matter Concentrations Using a Random Forest Model. Environ. Sci. Technol. 2018, 52, 4173–4179. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Animal Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Zimmerman, N.; Presto, A.A.; Kumar, S.P.N.; Gu, J.; Hauryliuk, A.; Robinson, E.S.; Robinson, A.L.; Subramanian, R. A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring. Atmos. Meas. Tech. 2018, 11, 291–313. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Martin, S.T. Phase Transitions of Aqueous Atmospheric Particles. Chem. Rev. 2000, 100, 3403–3454. [Google Scholar] [CrossRef]
- Cheng, Z.; Ma, X.; He, Y.; Jiang, J.; Wang, X.; Wang, Y.; Sheng, L.; Hu, J.; Yan, N. Mass extinction efficiency and extinction hygroscopicity of ambient PM2.5 in urban China. Environ. Res. 2017, 156, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sun, J.Y.; Shen, X.J.; Zhang, Y.M.; Che, H.; Ma, Q.L.; Ogren, J.A. Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China. Atmos. Chem. Phys. 2015, 15, 8439–8454. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Gu, J.; Li, Y.; Cheng, Y.; Qu, Y.; Han, T.; Zhang, Y. Increase of aerosol scattering by hygroscopic growth: observation, modeling, and implications on visibility. Atmos. Res. 2013, 132, 91–101. [Google Scholar] [CrossRef]
- Magi, B.I.; Hobbs, P.V. Effects of humidity on aerosols in southern Africa during the biomass burning season. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
No. | TSP Monitoring Sites a | Nearby National Monitoring Stations b | Data Volume | Distance (km) | Comments |
---|---|---|---|---|---|
1 | CX S. | - | 558 | 3.3 | The same site |
2 | CX R. | SSD | 106 | 3.5 | Validation site |
3 | GSY&XQ R. | SSD | 40 | 2.2 | |
4 | GL&GSY R. | SSD | 40 | 1.4 | |
5 | JD&DX R. | PD | 20 | 1.6 | |
6 | PDN&WS R. | PD | 30 | 1.9 | |
7 | YS R. | PD | 30 | 1.9 | |
8 | ZY&TL R. | PD | 30 | 1.7 | |
9 | CZ&YQ R. | HK | 30 | 1.2 | |
10 | CZN&SD R. | HK | 30 | 1.5 | |
11 | GY&WSD R. | HK | 20 | 0.63 | |
12 | ZJZ&NJ R. | YP | 30 | 2.8 | |
13 | LZ&CY R. | YP | 30 | 0.69 | |
14 | DDH&MC R. | PT | 30 | 0.7 | |
15 | JY&ZL R. | PT | 30 | 3 | |
16 | FXZ&CQN R. | SWC | 30 | 1.8 | |
17 | CHN&CH R. | CS | 30 | 0.97 |
Predictors | Unit | Measurement Instruments |
---|---|---|
Scattering TSP concentrations | μg/m3 | CEL-712, Casella |
Hourly PM10 concentrations | μg/m3 | TEOM1405, Thermo Fisher Scientific |
Hourly PM2.5 concentrations | μg/m3 | TEOM1405FDMS, Thermo Fisher |
Hourly SO2 concentrations | μg/m3 | 43iSO2 analyzer, Thermo Fisher |
Hourly NO2 concentrations | μg/m3 | 42iNOX analyzer, Thermo Fisher |
Hourly CO concentrations | μg/m3 | 48iCO analyzer, Thermo Fisher |
Hourly O3 concentrations | μg/m3 | 49i O3 analyzer, Thermo Fisher |
Hourly ambient temperature | degree Celsius (°C) | Hengxin AZ-8809 Temp./RH Recorder |
Hourly ambient relative humidity | percent (%) | Hengxin AZ-8809 Temp./RH Recorder |
ML Models | Slope | R2 | MSE (µg/m3)2 | RMSE (µg/m3) | MAE (µg/m3) |
---|---|---|---|---|---|
Original Measurement | 0.41 | 0.10 | - | - | - |
SVM | 0.91 | 0.76 | 2401.52 | 49.01 | 24.19 |
RF | 1.02 | 0.82 | 2453.52 | 49.53 | 24.71 |
GBRT | 1.00 | 0.78 | 2861.07 | 53.49 | 30.15 |
ANN | 1.11 | 0.90 | 2723.42 | 52.19 | 29.18 |
Time Period | Gravimetric Results (μg/m3) | Casella Results (μg/m3) | SVM (μg/m3) | RF (μg/m3) | GBRT (μg/m3) | ANN (μg/m3) |
---|---|---|---|---|---|---|
15 June 2017 to 22 June 2017 | 132.22 | 92.28 | 132.85 | 133.15 | 132.53 | 134.04 |
23 February 2018 to 27 February 2018 | 121.15 | 108.10 | 114.96 | 119.92 | 120.71 | 119.83 |
15 June 2018 to 30 June 2018 | 107.73 | 94.53 | 104.82 | 107.94 | 107.73 | 107.96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Zhu, Z.; Cheng, Z.; Xu, S.; Wang, X.; Duan, Y. Correction of Light Scattering-Based Total Suspended Particulate Measurements through Machine Learning. Atmosphere 2020, 11, 139. https://doi.org/10.3390/atmos11020139
Guo Q, Zhu Z, Cheng Z, Xu S, Wang X, Duan Y. Correction of Light Scattering-Based Total Suspended Particulate Measurements through Machine Learning. Atmosphere. 2020; 11(2):139. https://doi.org/10.3390/atmos11020139
Chicago/Turabian StyleGuo, Qiaofeng, Zhu Zhu, Zhen Cheng, Shuhong Xu, Xiaoliang Wang, and Yusen Duan. 2020. "Correction of Light Scattering-Based Total Suspended Particulate Measurements through Machine Learning" Atmosphere 11, no. 2: 139. https://doi.org/10.3390/atmos11020139
APA StyleGuo, Q., Zhu, Z., Cheng, Z., Xu, S., Wang, X., & Duan, Y. (2020). Correction of Light Scattering-Based Total Suspended Particulate Measurements through Machine Learning. Atmosphere, 11(2), 139. https://doi.org/10.3390/atmos11020139