A Sea Breeze Study during Ticosonde-NAME 2004 in the Central Pacific of Costa Rica: Observations and Numerical Modeling
Abstract
:1. Introduction
2. Climate of the Region during the Analysis Period
3. Data and Methods
3.1. Study Area
3.2. Ticosonde-NAME 2004
3.3. Surface Data
3.4. Model and Experimental Design
3.5. Evaluation Methods
4. Results
4.1. Observational Data
4.2. Model Simulations
4.2.1. Case of 11 July 2004
4.2.2. Case of 1 September 2004
4.3. Model Evaluation
4.3.1. Simulation of 11 July 2004
4.3.2. Simulation of 1 September 2004
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Atkinson, B. Meso-Scale Atmospheric Circulations; Academic Press: London, UK, 1981; p. 496. [Google Scholar]
- Simpson, J. Sea Breeze and Local Winds; Cambridge University Press: Cambridge, UK, 1994; p. 234. [Google Scholar]
- Peña, M.; Douglas, M. Characteristics of Wet and Dry Spells over the Pacific Side of Central America during the Rainy Season. Mon. Weather Rev. 2002, 130, 3054–3073. [Google Scholar] [CrossRef]
- Westerberg, I.; Walther, A.; Guerrero, J.; Coello, Z.; Halldin, S.; Xu, C.; Chen, D.; Lundin, L. Precipitation data in a mountainous catchment in Honduras: Quality assessment and spatiotemporal characteristics. J. Theor. Appl. Clim. 2010, 101, 381–396. [Google Scholar] [CrossRef]
- Rapp, A.D.; Peterson, A.G.; Frauenfeld, O.W.; Quiring, S.M.; Roark, E.B. Climatology of Storm Characteristics in Costa Rica using the TRMM Precipitation Radar. J. Hydrometeorol. 2014, 15, 2615–2633. [Google Scholar] [CrossRef]
- Carrasco-Díaz, M.; Roque, A.; Sánchez-Montante, O.; Rivas, D. Local Breeze Effects on the Wind Energy Generation in the Northern Coast of Cuba. Wind Eng. 2011, 35, 635–648. [Google Scholar] [CrossRef]
- Muppa, S.K.; Anandan, V.K.; Kesarkar, K.A.; Rao, S.V.B.; Reddy, P.N. Study on deep inland penetration of sea breeze over complex terrain in the tropics. Atmos. Res. 2012, 104, 209–216. [Google Scholar] [CrossRef]
- Srinivas, C.; Venkatesan, R.; Somayaji, K.; Bagavath Singh, A. A numerical study of sea breeze circulation observed at a tropical site Kalpakkam on the east coast of India, under different synoptic flow situations. J. Earth Syst. Sci. 2006, 115, 557–574. [Google Scholar] [CrossRef]
- Srinivas, C.; Venkatesan, R.; Bagavath Singh, A. Sensitivity of mesoscale simulations of land–sea breeze to boundary layer turbulence parameterization. Atmos. Environ. 2007, 41, 2534–2548. [Google Scholar] [CrossRef]
- Rakesh, V.; Singh, R.; Joshi, P.C. Intercomparison of the performance of MM5/WRF with and without satellite data assimilation in short-range forecast applications over the Indian region. Meteorol. Atmos. Phys. 2009, 105, 133–155. [Google Scholar] [CrossRef]
- Pushpadas, D.; Vethamony, P.; Kotteppad, S.; Ratheesh, S.; Babu, M.; Balakrishnan Nair, T. Simulation of coastal winds along the central west coast of India using MM5 mesoscale model. Meteorol. Atmos. Phys. 2010, 109, 91–106. [Google Scholar] [CrossRef]
- Azorin-Molina, C.; Chen, D.; Tijm, S.; Baldi, M. A Multi-Year Study of Sea Breezes in a Mediterranean Coastal Site: Alicante (Spain). Int. J. Climatol. 2011, 31, 468–486. [Google Scholar] [CrossRef]
- Reddy, T.V.R.; Mehta, S.K.; Ananthavel, A.; Ali, S.; Annamalai, V.; Rao, D.N. Seasonal characteristics of sea breeze and thermal internal boundary layer over Indian east coast region. Meteorol. Atmos. Phys. 2020, 1–16. [Google Scholar] [CrossRef]
- Amador, J.A. A climatic feature of the tropical Americas: The trade wind easterly jet. Top. Meteorol. Oceanogr 1998, 5, 91–102. [Google Scholar]
- Amador, J.A. The Intra-Americas Sea Low-level Jet. Ann. N. Y. Acad. Sci. 2008, 1146, 153–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, W.; Ahijevych, D.; Amador, J.; Barros, A.; Berbery, E.H.; Caetano, E.; Carbone, R.; Ciesielski, P.; Cifelli, R.; Cortez-Vazquez, M.; et al. The NAME 2004 field campaign and modelling strategy. Bull. Am. Meteorol. Soc. 2006, 87, 79–94. [Google Scholar] [CrossRef]
- Sáenz, F.; Amador, J.A. Características del ciclo diurno de la precipitación en el Caribe de Costa Rica. Rev. Climatol. 2016, 16, 21–34. [Google Scholar]
- Schultz, D.M.; Bracken, W.E.; Bosart, L.F.; Hakim, G.J.; Bedrick, M.A.; Dickinson, M.J.; Tyle, K.R. The 1993 Superstorm Cold Surge: Frontal Structure, Gap Flow, and Tropical Impact. Mon. Weather Rev. 1997, 125, 5–39. [Google Scholar] [CrossRef] [Green Version]
- Schultz, D.M.; Bracken, W.E.; Bosart, L.F. Planetary- and Synoptic-Scale Signatures Associated with Central American Cold Surges. Mon. Weather Rev. 1998, 126, 5–27. [Google Scholar] [CrossRef]
- Durán-Quesada, A.M.; Gimeno, L.; Amador, J.; Nieto, R. Moisture sources for Central America: Identification of moisture sources using a Lagrangian analysis technique. J. Geophys. Res. 2010, 115, D05103. [Google Scholar] [CrossRef]
- Hidalgo, H.; Durán-Quesada, A.; Amador, J.A.; Alfaro, E. The Caribbean Low-Level Jet, the Inter-Tropical Convergence Zone and Precipitation Patterns in the Intra-Americas Sea: A Proposed Dynamical Mechanism. Geogr. Ann. Ser. Aphys. Geogr. 2015, 97, 41–59. [Google Scholar] [CrossRef]
- Wang, C.; Enfield, D. The Tropical Western Hemisphere Warm Pool. Geophys. Res. Lett. 2001, 28, 1635–1638. [Google Scholar] [CrossRef]
- Wang, C.; Enfield, D. A Further Study of the Tropical Western Hemisphere Warm Pool. J. Clim. 2003, 16, 1476–1493. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, P. Estudio Meteorológico de los Veranillos en Costa Rica; Nota de investigación # 5; Instituto Meteorológico Nacional y Ministerio de Agricultura y Ganadería: San José, Costa Rica, 1983.
- Magaña, V.; Amador, J.A.; Medina, S. The Midsummer Drought over Mexico and Central America. J. Clim. 1999, 12, 1577–1588. [Google Scholar] [CrossRef]
- Alfaro, E. Caracterización del “veranillo” en dos cuencas de la vertiente del Pacífico de Costa Rica, América Central. Rev. Biol. Trop. 2015, 62, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Herrera, E.; Magaña, V.; Caetano, E. Air-sea interactions and dynamical processes associated with the midsummer drought. Int. J. Clim. 2015, 35, 1569–1578. [Google Scholar] [CrossRef]
- Maldonado, T.; Rutgersson, A.; Alfaro, E.; Amador, J.A.; Claremar, B. Interannual variability of the midsummer drought in Central America and the connection with sea surface temperatures. Adv. Geosci. 2016, 42, 35–50. [Google Scholar] [CrossRef] [Green Version]
- García-Martínez, I.; Bollasina, M. Sub-monthly evolution of the Caribbean Low-Level Jet and its relationship with regional precipitation and atmospheric circulation. Clim. Dyn. 2020, 54, 4423–4440. [Google Scholar] [CrossRef] [Green Version]
- Amador, J.A.; Chacón, R.; Laporte, S. Climate and Climate Variability in the Arenal River Basin of Costa Rica. In Climate and Water: Trans-Boundary Challenges in the Americas; Diaz, H.F., Morehouse, B., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; Volume 16, pp. 317–349. [Google Scholar] [CrossRef] [Green Version]
- Amador, J.A.; Alfaro, E.; Lizano, O.; Magaña, V. Atmospheric forcing of the eastern tropical Pacific: A review. Prog. Oceanogr. 2006, 69, 101–142. [Google Scholar] [CrossRef]
- Amador, J.A.; Alfaro, E.; Rivera, E.; Calderón, B. Climatic Features and Their Relationship with Tropical Cyclones Over the Intra-Americas Seas. In Hurricanes and Climate Change; Elsner, J.B., Hodges, R., Malmstadt, J., Scheitlin, K., Eds.; Springer: New York, NY, USA, 2010; Volume 2, pp. 149–173. [Google Scholar] [CrossRef]
- Alfaro, E. Some Characteristics of the Precipitation Annual Cycle in Central America And their Relationships with its Surrounding Tropical Oceans. Top. Meteorol. Oceanogr. 2002, 7, 88–103. [Google Scholar]
- Maldonado, T.; Alfaro, E.; Hidalgo, H. A Revision of the main drivers and variability of Central America Climate and seasonal forecast systems. Rev. Biol. Trop. 2018, 66, S153–S175. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, E.; Amador, J.A. El Niño-Oscilación del sur y algunas series de temperatura máxima y brillo solar en Costa Rica. Top. Meteorol. Oceanogr. 1996, 3, 19–26. [Google Scholar]
- Alfaro, E.; Amador, J.A. Variabilidad y cambio climático en algunos parámetros sobre Costa Rica y su relación con fenómenos de escala sinóptica y planetaria. Top. Meteorol. Oceanogr. 1997, 4, 51–62. [Google Scholar]
- Amador, J.A.; Alfaro, E. La Oscilación Cuasi-bienal, ENOS y acoplamiento de algunos parámetros superficiales y estratosféricos sobre Costa Rica. Top. Meteorol. Oceanogr. 1996, 3, 45–53. [Google Scholar]
- Fernández, W.; Ramírez, P. El Niño, la Oscilación del Sur y sus efectos en Costa Rica: Una revisión. Tecnol. Marcha 1991, 11, 3–10. [Google Scholar]
- Mantua, N.; Hare, S. The Pacific Decadal Oscillation. J. Oceanogr. 2002, 58, 35–44. [Google Scholar] [CrossRef]
- Fallas-López, B.; Alfaro, E. Uso de herramientas estadísticas para la predicción estacional del campo de precipitación en América Central como apoyo a los Foros Climáticos Regionales. 1: Análisis de tablas de contingencia. Rev. Climatol. 2012, 12, 61–80. [Google Scholar]
- Maldonado, T.; Alfaro, E.; Fallas López, B.; Alvarado, L. Seasonal prediction of extreme precipitation events and frequency of rainy days over Costa Rica, Central America, using Canonical Correlation Analysis. Adv. Geosci. 2013, 33, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.; Dudhia, J.; Stauffer, D.R. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5); NCAR Technical Note 398 STR; National Center for Atmospheric Research: Boulder, CO, USA, 1994. [Google Scholar]
- Dee, D.; Uppala, S.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Liu, Y.; Warner, T. Comparison of the real time WRF and MM5 forecasts for the US army test ranges. In Proceedings of the 5th WRF/14th MM5 Users’ Workshop, Boulder, CO, USA, 22–25 June 2004. [Google Scholar]
- Deng, A.; Stauffer, D.R.; Zielonka, J.R.; Hunter, G.K. A Comparison of High-Resolution Mesoscale Forecasts using MM5 and WRF-ARW. In Proceedings of the 8th WRF Users’ Workshop, Boulder, CO, USA, 11–15 June 2007. [Google Scholar]
- Zielonka, J.; Gaudet, B.; Seaman, N.; Stauffer, D.; Deng, A.; Hunter, G. WRF and MM5 Real Time Systems: Statistical comparisons using the Model Evaluation Toolkit (MET). In Proceedings of the 9th WRF Users’ Workshop, Boulder, CO, USA, 23–27 June 2008. [Google Scholar]
- Wilmot, C.; Rappenglück, B.; Li, X. MM5 v3.6.1 and WRF v3.2.1 model comparison of standard and surface energy variables in the development of the planetary boundary layer. Geosci. Model Dev. 2014, 7, 2693–2707. [Google Scholar] [CrossRef] [Green Version]
- Rivera, E.; Amador, J. Predicción estacional del clima en Centroamérica mediante la reducción de escala dinámica. Parte II: Aplicación del modelo MM5V3. Rev. Mat. Teor. Apl. 2009, 16, 76–104. [Google Scholar] [CrossRef] [Green Version]
- Sáenz, F. El Ciclo Diurno de la Precipitación en el Caribe de Costa Rica: Observaciones y Simulaciones con un Modelo Dinámico Regional. Bachelor’s Thesis, Universidad de Costa Rica, San José, Costa Rica, 2014. [Google Scholar]
- Phadnis, M.; Robe, F.; Klausmann, A.; Scire, J. Importance of the spatial resolution of sea-surface-temperature data in meteorological modeling. In Proceedings of the 13th PSU/NCAR Mesoscale Model User’s Workshop, Boulder, CO, USA, 11 June 2003. [Google Scholar]
- Hong, S.Y.; Pan, H.L. Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model. Mon. Weather Rev. 1996, 124, 2322–2339. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. A Nonhydrostatic Version of the Penn State–NCAR Mesoscale Model: Validation Tests and Simulation of an Atlantic Cyclone and Cold Front. Mon. Weather Rev. 1993, 121, 1493–1513. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A. Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Mon. Weather Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef] [Green Version]
- Shafran, P.; Seaman, N.; Gayno, G. Evaluation of Numerical Predictions of Boundary Layer Structure during the Lake Michigan Ozone Study. J. Appl. Meteorol. 2000, 39, 412–426. [Google Scholar] [CrossRef]
- Kain, J.; Fritsch, J. A one-dimension al entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 1990, 47, 2784–2802. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.; In, H.; Clements, C. Impact of turbulence, land surface, and radiation parameterizations on simulated boundary layer properties in a coastal environment. J. Geophys. Res. 2007, 112, D13110. [Google Scholar] [CrossRef] [Green Version]
- Pearce, R.P. The calculation of a sea-breeze circulation in terms of the differential heating across the coastline. Q. J. R. Meteorol. Soc. 1955, 81, 351–381. [Google Scholar] [CrossRef]
- Schmidt, F.H. An elementary theory of the land and sea breeze circulation. J. Meteorol. 1947, 4, 9–20. [Google Scholar] [CrossRef]
- Oliphant, A.J.; Sturman, A.P.; Tapper, N.J. The evolution and structure of a tropical island sea/land-breeze system, northern Australia. Meteorol. Atmos. Phys. 2001, 78, 45–59. [Google Scholar] [CrossRef]
- Hastenrath, S.L. Rainfall Distribution and Regime in Central America. Arch. Met. Geoph. Biokl. B 1967, 15, 201–241. [Google Scholar] [CrossRef]
- Mendizábal, T. Distribución de la Precipitación con la Altura. Bachelor’s Thesis, Universidad de Costa Rica, San José, Costa Rica, 1973. [Google Scholar]
- Fernández, W.; Chacón, R.; José, M. On the rainfall distribution with altitude over Costa Rica. Rev. Geof. 1996, 44, 55–72. [Google Scholar]
- Zárate, E. Comportamiento del Viento en Costa Rica; Nota de Investigación # 2; Instituto Meteorológico Nacional: San José, Costa Rica, 1978. [Google Scholar]
- Muñoz, A.; Fernández, W.; Gutiérrez, J.A.; Zárate, E. Distribución horaria de la magnitud del viento en Costa Rica. Top. Meteorol. Oceanogr. 2002, 9, 14–28. [Google Scholar]
- Cook, K.H.; Vizy, E.K. Hydrodynamics of the Caribbean Low-Level Jet and Its Relationship to Precipitation. J. Clim. 2010, 23, 1477–1494. [Google Scholar] [CrossRef]
- Beven, J., II. Tropical Cyclone Report (AL062004), Hurricane Frances, 25 August–8 September 2004; Technical Report; National Hurricane Center: Miami, FL, USA, 2005. [Google Scholar]
- Liu, Y.; Liu, Y.; Muñoz-Esparza, D.; Hu, F.; Yan, C.; Miao, S. Simulation of Flow Fields in Complex Terrain with WRF-LES: Sensitivity Assessment of Different PBL Treatments. J. Appl. Meteorol. Climatol. 2020, 59, 1481–1501. [Google Scholar] [CrossRef]
Station | Station | Latitude | Longitud | Altitude | Missing | Instrument |
---|---|---|---|---|---|---|
Number | Name | (m) | Data | Type | ||
1 | Puntarenas | 9.93 | −84.77 | 3 | 21.3 | CS |
2 | Guacalillo | 9.80 | −84.65 | 24 | 17.7 | D |
3 | Capulin | 9.81 | −84.59 | 70 | 2.8 | D |
4 | Lagunilla | 9.85 | −84.61 | 172 | 11.7 | CS |
5 | Orotina | 9.94 | −84.54 | 185 | 5.8 | CS |
6 | Hacienda Vieja | 9.91 | −84.49 | 280 | 1.8 | CS |
7 | Escuela Ganadería | 9.93 | −84.37 | 450 | 0 | CS |
8 | La Garita | 10.00 | −84.27 | 760 | 2.9 | CS |
9 | JSIA | 9.99 | −84.21 | 921 | 0 | CS |
10 | CIGEFI | 9.94 | −84.05 | 1249 | 3.5 | CS |
11 July 2004 | 1 September 2004 | |||||||
---|---|---|---|---|---|---|---|---|
GrMRF | KFGS | GrMRF | KFGS | |||||
Station Number | Bias | MSE | Bias | MSE | Bias | MSE | Bias | MSE |
1 | N/A | N/A | N/A | N/A | −0.14 | 2.52 | 0.44 | 2.16 |
2 | 1.31 | 2.84 | 1.30 | 4.35 | 0.68 | 4.73 | 1.09 | 6.04 |
3 | 1.02 | 2.10 | 0.88 | 3.56 | 0.63 | 2.90 | 0.47 | 1.45 |
4 | 0.81 | 1.61 | 0.74 | 3.34 | 0.31 | 3.96 | 0.45 | 1.94 |
5 | 0.85 | 1.29 | 0.31 | 0.88 | −0.11 | 1.60 | −0.05 | 1.64 |
6 | 1.26 | 3.52 | 0.45 | 0.47 | 0.05 | 2.55 | −0.01 | 1.42 |
7 | 2.60 | 7.81 | 1.25 | 4.48 | 0.45 | 1.83 | 0.33 | 1.00 |
8 | 2.18 | 7.05 | 0.42 | 0.79 | 0.50 | 1.73 | 0.18 | 2.81 |
9 | 1.08 | 9.45 | 0.67 | 9.10 | −2.03 | 8.80 | −2.61 | 10.70 |
10 | 0.57 | 2.92 | 0.93 | 3.59 | −1.73 | 3.43 | −1.25 | 2.93 |
Overall | 1.17 | 3.86 | 0.70 | 3.06 | −0.14 | 3.41 | −0.10 | 3.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora, N.; Amador, J.A.; Rivera, E.R.; Maldonado, T. A Sea Breeze Study during Ticosonde-NAME 2004 in the Central Pacific of Costa Rica: Observations and Numerical Modeling. Atmosphere 2020, 11, 1333. https://doi.org/10.3390/atmos11121333
Mora N, Amador JA, Rivera ER, Maldonado T. A Sea Breeze Study during Ticosonde-NAME 2004 in the Central Pacific of Costa Rica: Observations and Numerical Modeling. Atmosphere. 2020; 11(12):1333. https://doi.org/10.3390/atmos11121333
Chicago/Turabian StyleMora, Natali, Jorge A. Amador, Erick R. Rivera, and Tito Maldonado. 2020. "A Sea Breeze Study during Ticosonde-NAME 2004 in the Central Pacific of Costa Rica: Observations and Numerical Modeling" Atmosphere 11, no. 12: 1333. https://doi.org/10.3390/atmos11121333
APA StyleMora, N., Amador, J. A., Rivera, E. R., & Maldonado, T. (2020). A Sea Breeze Study during Ticosonde-NAME 2004 in the Central Pacific of Costa Rica: Observations and Numerical Modeling. Atmosphere, 11(12), 1333. https://doi.org/10.3390/atmos11121333