Transition from a Subaerial to a Subnival Permafrost Temperature Regime Following Increased Snow Cover (Livingston Island, Maritime Antarctic)
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Ground Temperature, Air Temperature, and Snow Thickness
3.2. Determination of the Active Layer Thickness
3.3. Determination of the Zero Annual Amplitude Depth
3.4. Calculation of the Net Energy Exchange (H)
4. Results
4.1. Evolution of Air Temperature and Snow Thickness
4.2. Active Layer Thickness
4.3. Zero Annual Ground Thermal Amplitude (ZAA)
4.4. Soil Surface Energy Exchange
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations and Units
ALT | Active Layer Thickness (m). |
BAE JCI | Spanish Antarctic Station. |
CALM | Circumpolar Active Layer Monitoring. |
ERT | Electrical Resistivity Tomography. |
GTN-P | Global Terrestrial Network for Permafrost. |
IPY | International Polar Year. |
MAAT | Mean Annual Air Temperature (°C). |
PG1 and PG2 | Permamodel-Gulbenkian boreholes 1 and 2. |
TSP | Thermal State of Permafrost. |
ZAA | Zero annual thermal amplitude (°C). |
Symbols and units. | |
x | spatial variable (m) |
t | time variable (s) |
α | thermal diffusivity (m2/s) |
H | Enthalpy (MJ/m2) |
k | thermal conductivity (W/m K) |
TM | annual maximum temperature distribution into the ground (°C) |
Tm | annual minimum temperature distribution into the ground (°C) |
XALT | ALT obtained from the Equation (3) (m) |
XZAA | ZAA obtained from the Equation (5) (m) |
References
- Langer, M.; Wassermann, S.; Muster, S.; Piel, K.; Boike, J. Permafrost and surface energy balance of a polygonal tundra site in Northern Siberia. Cryosphere Discuss 2010, 4, 1391–1431. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T. Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys. 2005, 43, RG4002. [Google Scholar] [CrossRef]
- Vieira, G.; Bockheim, J.; Guglielmin, M.; Balks, M.; Abramov, A.A.; Boelhouwers, J.; Cannone, N.; Ganzert, L.; Gilichinsky, D.A.; Goryachkin, S.; et al. Thermal state of permafrost and active-layer monitoring in the antarctic: Advances during the international polar year 2007–2009. Permafr. Periglac. Process. 2010, 21, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bockheim, J.G. International Workshop on Antarctic Permafrost and Soils, November 14–18, 2004. In Final Report Submitted to Office of Polar Programs, Antarctic Section, National Science Foundation, Project OPP-0425692; University of Wisconsin: Madison, WI, USA, 2004. [Google Scholar]
- Bockheim, J.; Vieira, G.; Ramos, M.; López-Martínez, J.; Serrano, E.; Guglielmin, M.; Wilhelm, K.; Nieuwendam, A. Climate warming and permafrost dynamics in the Antarctic Peninsula region. Glob. Planet. Chang. 2013, 100, 215–223. [Google Scholar] [CrossRef]
- Staub, B.; Hasler, A.; Noetzli, J.; Delaloye, R. Gap-Filling Algorithm for Ground Surface Temperature Data Measured in Permafrost and Periglacial Environments Permafrost and Periglac. Process 2017, 28, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.; Vieira, G. Evaluation of the ground surface Enthalpy balance from bedrock temperatures (Livingston Island, Maritime Antarctic). Cryosphere 2009, 3, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Barrand, N.E.; Bracegirdle, T.J.; Convey, P.; Hodgson, D.A.; Jarvis, M.; Jenkins, A.; Marshall, G.; Meredith, M.P.; Roscoe, H.; et al. Antarctic climate change and the environment: An update. Polar Rec. 2014, 50, 237–259. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Marshall, G.J.; Clem, K.; Colwell, S.; Phillips, T.; Lu, H. Antarctic Temperature Variability and Change from Station Data Article. Int. J. Climatol. 2019. [Google Scholar] [CrossRef] [Green Version]
- De Pablo, M.A.; Ramos, M.; Molina, A.; Vieira, G.; Hidalgo, M.A.; Prieto, M.; Jiménez, J.J.; Fernández, S.; Recondo, C.; Calleja, J.F.; et al. Frozen ground and snow cover monitoring in the South Shetland Islands, Antarctica: Instrumentation, effects on ground thermal behaviour and future research. Cuad. Investig. Geográfica 2016, 42, 475–495. [Google Scholar] [CrossRef] [Green Version]
- Antarctic Climate Data READER Project. Available online: http://legacy.bas.ac.uk/met/READER (accessed on 1 December 2020).
- de Pablo, M.A.; Ramos, M.; Molina, A. Snow cover evolution, on 2009–2014, at the Limnopolar Lake CALM-S site on Byers Peninsula, Livingston Island, Antarctica. CATENA 2017, 149, 538–547. [Google Scholar] [CrossRef]
- Oliva, M.; Navarro, F.; Hrbáček, F.; Hernández, A.; Nývlt, D.; Pereira, P.; Ruiz-Fernández, J.; Trigo, R. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Sci. Total Environ. 2017, 580, 210–223. [Google Scholar] [CrossRef] [PubMed]
- Navarro, F.J.; Jonsell, U.Y.; Corcuera, M.I.; Martin-Espanol, A. Decelerated mass loss of Hurd and Johnsons Glaciers, Livingston Island, Antarctic Peninsula. J. Glaciol. 2013, 59, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Cook, A.J.; Vaughan, D.G.; Luckman, A.J.; Murray, T. A new Antarctic Peninsula glacier basin inventory and observed area changes since the 1940s. Antarct. Sci. 2014, 26, 614–624. [Google Scholar] [CrossRef] [Green Version]
- Sancho, L.G.; Pintado, A.; Navarro, F.; Ramos, M.; De Pablo, M.A.; Blanquer, J.M.; Raggio, J.; Valladares, F.; Green, T.G.A. Recent Warming and Cooling in the Antarctic Peninsula Region has Rapid and Large Effects on Lichen Vegetation. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.; Vieira, G. Active layer and permafrost monitoring in Livingston Island, Antarctic. First results from 2000 to 2001. In Proceedings of the 8th International Conference on Permafrost, Zürich, Switzerland, 21–25 July 2003; pp. 929–933. [Google Scholar]
- Hauck, C.; Vieira, G.; Gruber, S.; Blanco, J.; Ramos, M. Geophysical identification of permafrost in Livingston Island, maritime Antarctica. J. Geophys. Res. Earth Surf. 2007, 112, F02S19. [Google Scholar] [CrossRef] [Green Version]
- Bañón, M.; Justel, A.; Velázquez, D.; Quesada, A. Regional weather survey on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica. Antarct. Sci. 2013, 25, 146–156. [Google Scholar] [CrossRef]
- Bañon, M.; Vasallo, F. AEMET en la Antártida: Climatología y meteorología sinóptica en las estaciones meteorológicas españolas en la Antártida. Agencia Estatal Meteorol. 2015. Available online: https://www.pinterest.co.uk/pin/390546598916668259/ (accessed on 5 December 2020).
- Vieira, G.; López-Martínez, J.; Serrano, E.; Ramos, M.; Gruber, S.; Hauck, C.; Blanco, J.J. Geomorphological observations of permafrost and ground-ice degradation on Deception and Livingston Islands, Maritime Antarctica. In Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, 29 June–3 July 2008; pp. 1839–1844. [Google Scholar]
- Molina, A.; de Pablo, M.A.; Ramos, M.; Vieira, G. Estudio del efecto de la cobertura nival sobre los periodos de congelación-descongelación en el entorno de la Base Antártica Española Juan Carlos, I. In Criosferas, sueloscongelados y cambio climático. III Congreso Ibérico de la International Permafrost Association. Piornedo (Lugo, España); Departamento de Xeografía: Santiago de Compostela, Spain, 2011; pp. 87–92. [Google Scholar]
- Ramos, M.; Hasler, A.; Vieira, G.; Hauck, C.; Gruber, S. Drilling and installation of boreholes for permafrost thermal monitoring on Livingston Island in the maritime Antarctic. Permafr. Periglac. Process. 2009, 20, 57–64. [Google Scholar] [CrossRef]
- Correia, A.; Vieira, G.; Ramos, M. Thermal conductivity and thermal diffusivity of cores from a 26-meter-deep borehole drilled in Livingston Island, Maritime Antarctic. Geomorphology 2012, 155–156, 7–11. [Google Scholar] [CrossRef]
- Romanovsky, V.E.; Drozdov, D.S.; Oberman, N.G.; Malkova, G.V.; Kholodov, A.L.; Marchenko, S.S.; Moskalenko, N.G.; Sergeev, D.O.; Ukraintseva, N.G.; Abramov, A.A.; et al. Thermal state of permafrost in Russia. Permafrost Perigl. Process. 2010, 21. [Google Scholar] [CrossRef]
- Gubler, S.; Fiddes, J.; Keller, M.; Gruber, S. Scale-dependent measurement and analysis of ground surface temperature variability in alpine terrain. Cryosphere 2011, 5, 431–443. [Google Scholar] [CrossRef] [Green Version]
- Lewkowicz, A.G. Evaluation of miniatures temperatures-loggers to monitor snow-pack evolution at mountain permafrost sites, northwestern Canada. Permafr. Periglac. Process. 2008, 19, 323–331. [Google Scholar] [CrossRef]
- Danby, R.K.; Hik, D.S. Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline. Glob. Chang. Biol. 2007, 13, 437–451. [Google Scholar] [CrossRef]
- Osmanoglu, B.; Navarro Valero, F.J.; Hock, R.; Braun, M.; Corcuera Labrado, M.I. Surface velocity and mass balance of Livingston Island ice cap, Antarctica. Cryosphere 2014, 8, 1807–1823. [Google Scholar] [CrossRef] [Green Version]
- Guglielmin, M.; Balks, M.R.; Adlam, L.S.; Baio, F. Permafrost thermal regime from two 30-m deep boreholes in southern victoria land. Antarctica 2011, 22, 129–139. [Google Scholar] [CrossRef]
- Hrbáček, F.; Láska, K.; Engel, Z. Effect of Snow Cover on the Active-Layer Thermal Regime—A Case Study from James Ross Island. Antarct. Penins. 2016, 27, 307–315. [Google Scholar] [CrossRef]
- Ramos, M.; de Pablo, M.A.; Vieira, G.; Molina, A.; Abramov, A.; Goyanes, G. Recent shallowing of the thaw depth at Crater Lake, Deception Island, Antarctica (2006–2014). CATENA 2017, 149, 519–528. [Google Scholar] [CrossRef]
- Oliva, M.; Hrbacek, F.; Ruiz-Fernández, J.; de Pablo, M.A.; Vieira, G.; Ramos, M.; Antoniades, D. Active layer dynamics in three topographically distinct lake catchments in Byers Peninsula (Livingston Island, Antarctica). CATENA 2017, 149, 548–559. [Google Scholar] [CrossRef]
- Ballantyne, C.K. Paraglacial geomorphology. Quat. Sci. Rev. 2002, 21, 1935–2017. [Google Scholar] [CrossRef]
Borehole Name | Coordinates | Altitude (m a.s.l.) | Diameter (mm) (±1 mm) | Depth (m) (±0.02 m) | Sensor Position (m) (±0.005 m) | Sensors Description |
---|---|---|---|---|---|---|
PERMAMODEL-GULBENKIAN-1 (PG1) | 62.8390° S, 60.8210° W | 271 | 40 | 25.0 | 0.2; 0.4; 0.8; 1.2; 1.6; 2.0; 2.5; 3.0; 3.5; 4.0; 5.0; 6.0; 8.0; 10.0; 12.5; 15.0; 17.5; 20.0; 22.5 and 25.0 | Thermistors type YSI 44031 (accuracy 0.1 °C) Air temperature Pt100 (accuracy 0.1 °C) Hourly recording |
PERMAMODEL-GULBENKIAN-2 (PG2) | 62.8390° S, 60.8210° W | 255 | 40 | 15.0 | 0.2; 0.4; 0.8; 1.2; 1.6; 2.0; 2.5; 3.0; 3.5; 4.0; 5.0; 6.0; 8.0; 10.0; 12.5 and 15.0 | i-button DS1922L (accuracy 0.25 °C) 3 h recording |
(a) PG1 borehole. Sofia peak. | ||||||
Year | AM (°C) | BM (°C) | r2 | Am (°C) | Bm (°C) | r2 |
2009 | −0.80 | 0.26 | 0.84 | 1.63 | −6.12 | 0.91 |
2010 | −0.81 | 0.20 | 0.81 | 1.23 | −5.04 | 0.88 |
2011 | −0.84 | 0.31 | 0.78 | 1.75 | −6.62 | 0.95 |
2012 | No data | No data | No data | No data | No data | No data |
2013 | No data | No data | No data | No data | No data | No data |
2014 | −0.44 | −0.42 | 0.94 | 0.66 | −3.61 | 0.97 |
2015 | −0.43 | −0.28 | 0.72 | 1.67 | −6.55 | 0.92 |
(b) PG2 borehole. Glacier margin. | ||||||
Year | AM (°C) | BM (°C) | r2 | Am (°C) | Bm (°C) | r2 |
2009 | −1.92 | 2.74 | 0.92 | 1.78 | −6.54 | 0.95 |
2010 | −1.86 | 1.97 | 0.86 | 1.03 | −4.15 | 0.86 |
2011 | −0.42 | −0.26 | 0.92 | 1.08 | −4.69 | 0.99 |
2012 | −0.47 | −0.31 | 0.73 | 0.60 | −3.41 | 0.98 |
2013 | −0.38 | −0.49 | 0.93 | 0.36 | −2.82 | 0.95 |
2014 | −0.31 | −0.60 | 0.86 | 0.21 | −2.23 | 0.91 |
2015 | −0.29 | −0.52 | 0.86 | 0.36 | −2.63 | 0.75 |
PG1 | PG2 | ||||
---|---|---|---|---|---|
Year | Days with Snow Cover | Snow Index (m. day) | Snow Thickness (Annual Mean) (m) | Measuring Date | Snow Thickness (Annual Maximum) (±0.02 m) |
2008 | No data | No data | No data | 15/01/2009 | 0.00 |
2009 | 157 | 33.8 | 0.02 | 09/01/2010 | 0.40 |
2010 | 136 | 32.9 | 0.04 | 10/01/2011 | 1.40 |
2011 | 139 | 32.4 | 0.02 | 08/01/2012 | 1.84 |
2012 | 294 | 71.0 | 0.16 | 15/01/2013 | No data |
2013 | 365 | 87.4 | 0.10 | 29/01/2014 | 2.10 |
2014 | 266 | 63.9 | 0.09 | 29/01/2015 | 2.98 |
2015 | 365 | 93.8 | 0.08 | 13/02/2016 | 3.54 |
Year | Active Layer Depth (m) | |
---|---|---|
PG1 | PG2 | |
2009 | 1.4 ± 0.4 | 4.2 ± 0.8 |
2010 | 1.3 ± 0.4 | 2.9 ± 0.4 |
2011 | 1.4 ± 0.4 | 0.5 ± 0.2 |
2012 | 1.4 ± 0.4 | 0.5 ± 0.2 |
2013 | No data | 0.3 ± 0.2 |
2014 | 0.4 ± 0.2 | 0.1 ± 0.2 |
2015 | 0.5 ± 0.3 | 0.2 ± 0.3 |
Year | ZAA (PG1) | ZAA (PG2) |
---|---|---|
XZAA(m) | XZAA(m) | |
2009 | 11.8 ± 2.5 | 9.4 ± 0.7 |
2010 | 10.8 ± 2.8 | 5.9 ± 0.5 |
2011 | 12.5 ± 2.5 | 9.8 ± 1.8 |
2012 | 8.5 ± 2.5 | 7.0 ± 1.8 |
2013 | No Data | 6.1 ± 2.2 |
2014 | 12.8 ± 6.1 | 3.3 ± 1.7 |
2015 | 16.4 ± 4.1 | 5.5 ± 2.3 |
Year | H (MJ/m2) PG1 | H (MJ/m2) PG2 |
---|---|---|
2009 | 64 ± 7 | 75 ± 6 |
2010 | 50 ± 7 | 38 ± 4 |
2011 | 71 ± 7 | 38 ± 9 |
2012 | 35 ± 5 | 21 ± 7 |
2013 | No data | 14 ± 7 |
2014 | 37 ± 10 | 6 ± 5 |
2015 | 78 ± 10 | 12 ± 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, M.; Vieira, G.; de Pablo, M.A.; Molina, A.; Jimenez, J.J. Transition from a Subaerial to a Subnival Permafrost Temperature Regime Following Increased Snow Cover (Livingston Island, Maritime Antarctic). Atmosphere 2020, 11, 1332. https://doi.org/10.3390/atmos11121332
Ramos M, Vieira G, de Pablo MA, Molina A, Jimenez JJ. Transition from a Subaerial to a Subnival Permafrost Temperature Regime Following Increased Snow Cover (Livingston Island, Maritime Antarctic). Atmosphere. 2020; 11(12):1332. https://doi.org/10.3390/atmos11121332
Chicago/Turabian StyleRamos, Miguel, Gonçalo Vieira, Miguel Angel de Pablo, Antonio Molina, and Juan Javier Jimenez. 2020. "Transition from a Subaerial to a Subnival Permafrost Temperature Regime Following Increased Snow Cover (Livingston Island, Maritime Antarctic)" Atmosphere 11, no. 12: 1332. https://doi.org/10.3390/atmos11121332
APA StyleRamos, M., Vieira, G., de Pablo, M. A., Molina, A., & Jimenez, J. J. (2020). Transition from a Subaerial to a Subnival Permafrost Temperature Regime Following Increased Snow Cover (Livingston Island, Maritime Antarctic). Atmosphere, 11(12), 1332. https://doi.org/10.3390/atmos11121332