Comparative Analysis of the Cloud Behavior over Inland and Coastal Regions within Single Climate Characteristics
Abstract
:1. Introduction
2. Measurement and Data
3. Results and Analysis
3.1. Comparison of Cloud Occurrence over Seoul and Taean
3.2. Comparison of Cloud Vertical Distribution between Seoul and Taean
3.3. Case Studies of Seasonal CBH Behavior
3.3.1. Winter Case
3.3.2. Summer Case
3.3.3. Autumn case
4. Summary and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and aerosols. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 571–658. [Google Scholar]
- Lee, S.; Hwang, S.-O.; Kim, J.; Ahn, M.-H. Characteristics of cloud occurrence using ceilometer measurements and its relationship to precipitation over seoul. Atmos. Res. 2018, 201, 46–57. [Google Scholar] [CrossRef]
- Hong, Y.; Liu, G. The characteristics of ice cloud properties derived from cloudsat and calipso measurements. J. Clim. 2015, 28, 3880–3901. [Google Scholar] [CrossRef]
- Nakajima, T.; Yoon, S.C.; Ramanathan, V.; Shi, G.Y.; Takemura, T.; Higurashi, A.; Takamura, T.; Aoki, K.; Sohn, B.J.; Kim, S.W. Overview of the atmospheric brown cloud east asian regional experiment 2005 and a study of the aerosol direct radiative forcing in east asia. J. Geophys. Res. Atmos. 2007, 112, D24S91. [Google Scholar] [CrossRef]
- An, N.; Pinker, R.T.; Wang, K.; Rogers, E.; Zuo, Z. Evaluation of cloud base height in the north american regional reanalysis using ceilometer observations. Int. J. Climatol. 2020, 40, 3161–3178. [Google Scholar] [CrossRef]
- Gaumet, J.; Heinrich, J.; Cluzeau, M.; Pierrard, P.; Prieur, J. Cloud-base height measurements with a single-pulse erbium-glass laser ceilometer. J. Atmos. Ocean. Technol. 1998, 15, 37–45. [Google Scholar] [CrossRef]
- Shields, J.E.; Karr, M.E.; Johnson, R.W.; Burden, A.R. Day/night whole sky imagers for 24-h cloud and sky assessment: History and overview. Appl. Opt. 2013, 52, 1605–1616. [Google Scholar] [CrossRef]
- Cazorla, A.; Olmo, F.; Alados-Arboledas, L. Development of a sky imager for cloud cover assessment. JOSA A 2008, 25, 29–39. [Google Scholar] [CrossRef]
- Sun, X.; Gao, T.; Zhai, D.; Zhao, S.; Lian, J. Whole sky infrared cloud measuring system based on the uncooled infrared focal plane array. Infrared Laser Eng. 2008, 37, 761–764. [Google Scholar]
- Wiegner, M.; Madonna, F.; Binietoglou, I.; Forkel, R.; Gasteiger, J.; Geiß, A.; Pappalardo, G.; Schäfer, K.; Thomas, W. What is the benefit of ceilometers for aerosol remote sensing? An answer from earlinet. Atmos. Meas. Tech. 2014, 7, 1979–1997. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Rossow, W.B.; Zhang, Y. Cloud vertical structure and its variations from a 20-yr global rawinsonde dataset. J. Clim. 2000, 13, 3041–3056. [Google Scholar] [CrossRef]
- Poore, K.D.; Wang, J.; Rossow, W.B. Cloud layer thicknesses from a combination of surface and upper-air observations. J. Clim. 1995, 8, 550–568. [Google Scholar] [CrossRef] [Green Version]
- Rossow, W.B.; Schiffer, R.A. Isccp cloud data products. Bull. Am. Meteorol Soc. 1991, 72, 2–20. [Google Scholar] [CrossRef]
- Probst, P.; Rizzi, R.; Tosi, E.; Lucarini, V.; Maestri, T. Total cloud cover from satellite observations and climate models. Atmos. Res. 2012, 107, 161–170. [Google Scholar] [CrossRef]
- Wang, J.; Rossow, W.B. Determination of cloud vertical structure from upper-air observations. J. Appl. Meteorol. 1995, 34, 2243–2258. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Rossow, W.B.; Uttal, T.; Rozendaal, M. Variability of cloud vertical structure during astex observed from a combination of rawinsonde, radar, ceilometer, and satellite. Mon. Weather. Rev. 1999, 127, 2484–2502. [Google Scholar] [CrossRef]
- Randall, D.A.; Albrecht, B.; Cox, S.; Johnson, D.; Minnis, P.; Rossow, W.; Starr, D.C. On fire at ten. Adv. Geophys. 1996, 38, 37–177. [Google Scholar]
- Starr, D.O.C. A cirrus-cloud experiment: Intensive field observations planned for fire. Bull. Am. Meteorol. Soc. 1987, 68, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Schiffer, R.A.; Rossow, W.B. The international satellite cloud climatology project (isccp): The first project of the world climate research programme. Bull. Am. Meteorol Soc. 1983, 64, 779–784. [Google Scholar] [CrossRef] [Green Version]
- Liou, K.-N. Radiation and Cloud Processes in the Atmosphere. Theory, Observation, and Modeling. Available online: https://www.osti.gov/biblio/7081459 (accessed on 3 December 2020).
- Rasmussen, R.M.; Smolarkiewicz, P.; Warner, J. On the dynamics of hawaiian cloud bands: Comparison of model results with observations and island climatology. J. Atmos. Sci. 1989, 46, 1589–1608. [Google Scholar] [CrossRef] [Green Version]
- Kollias, P.; Tselioudis, G.; Albrecht, B.A. Cloud climatology at the southern great plains and the layer structure, drizzle, and atmospheric modes of continental stratus. J. Geophys. Res Atmos. 2007, 112, D09116. [Google Scholar] [CrossRef]
- Van Tricht, K.; Gorodetskaya, I.; Lhermitte, S.; Turner, D.; Schween, J.; Van Lipzig, N. An improved algorithm for polar cloud-base detection by ceilometer over the ice sheets. Atmos. Meas. Tech. 2014, 7, 1153–1167. [Google Scholar] [CrossRef] [Green Version]
- Martucci, G.; Milroy, C.; O’Dowd, C.D. Detection of cloud-base height using jenoptik chm15k and vaisala cl31 ceilometers. J. Atmos Ocean. Technol. 2010, 27, 305–318. [Google Scholar] [CrossRef]
- Costa-Surós, M.; Calbó, J.; González, J.; Martin-Vide, J. Behavior of cloud base height from ceilometer measurements. Atmos. Res. 2013, 127, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Sun, X.-J.; Liu, X.-C.; Gao, T.-C.; Zhao, S.-J. Comparison of cloud base height derived from a ground-based infrared cloud measurement and two ceilometers. Adv. Meteorol. 2015, 2015, 853861. [Google Scholar] [CrossRef] [Green Version]
- Jarraud, M. Guide to Meteorological Instruments and Methods of Observation; World Meteorological Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Vaishnav, R.; Sharma, S.; Shukla, K.; Kumar, P.; Lal, S. A comprehensive statistical study of cloud base height using ceilometer over western india. Adv. Space Res. 2019, 63, 1708–1718. [Google Scholar] [CrossRef]
- Oyj, V. Vaisala Ceilometer cl51 User’s Guide; Vaisala Oyj: Helsinki, Finland, 2012; Available online: https://www.raimet.ru/imgs/db/catalog2_files/file_106.pdf (accessed on 3 December 2020).
- KMA. Annual Climatological Report. Available online: http://www.weather.gov.sg/wp-content/uploads/2018/03/Annual-Climatological-Report-2017.pdf (accessed on 3 December 2020).
- Morris, V.; Winston, H.A. Laser Ceilometer cl51 Demonstration Field Campaign Report. Available online: https://www.osti.gov/biblio/1254298-laser-ceilometer-cl51-demonstration-field-campaign-report (accessed on 3 December 2020).
- Min, S.-K.; Kim, Y.-H.; Lee, S.-M.; Sparrow, S.; Li, S.; Lott, F.C.; Stott, P.A. Quantifying human impact on the 2018 summer longest heat wave in south korea. Bull. Am. Meteorol. Soc. 2020, 101, S103–S108. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-D.; Min, K.-H.; Bae, J.-H.; Cha, D.-H. Characteristics and comparison of 2016 and 2018 heat wave in korea. Atmosphere 2020, 30, 1–15. [Google Scholar]
- Yoon, D.; Cha, D.-H.; Lee, M.-I.; Min, K.-H.; Kim, J.; Jun, S.-Y.; Choi, Y. Recent changes in heatwave characteristics over korea. Clim. Dyn. 2020, 55, 1685–1696. [Google Scholar] [CrossRef]
- KMA. Annual Climatological Report. Available online: http://www.weather.gov.sg/wp-content/uploads/2020/03/Annual-Climate-Assessment-Report-2019.pdf (accessed on 3 December 2020).
- Lau, K.-M.; Li, M.-T. The monsoon of east asia and its global associations—A survey. Bull. Am. Meteorol. Soc. 1984, 65, 114–125. [Google Scholar] [CrossRef]
- Jhun, J.-G.; Lee, E.-J. A new east asian winter monsoon index and associated characteristics of the winter monsoon. J. Clim. 2004, 17, 711–726. [Google Scholar] [CrossRef]
- Eichenlaub, V.L. Lake effect snowfall to the lee of the great lakes: Its role in michigan. Bull. Am. Meteorol. Soc. 1970, 51, 403–413. [Google Scholar] [CrossRef]
- Niziol, T.A.; Snyder, W.R.; Waldstreicher, J.S. Winter weather forecasting throughout the eastern united states. Part iv: Lake effect snow. Weather. Forecast. 1995, 10, 61–77. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.Y.; Chang, E.C. Impact of land-sea thermal contrast on the inland penetration of sea fog over the coastal area around the korean peninsula. J. Geophys. Res. Atmos. 2018, 123, 6487–6504. [Google Scholar] [CrossRef]
- Wang, B. Rainy season of the asian–pacific summer monsoon. J Clim. 2002, 15, 386–398. [Google Scholar] [CrossRef] [Green Version]
Instrument | Ceilometer | |
---|---|---|
Model | Vaisala CL51 | Vaisala CL31 |
Measurement range | Backscatter profiles 0–15,000 m Cloud base height 0–13,000 m | Backscatter profiles 0–7750 m Cloud base height 0–7750 m |
Vertical resolution | 10 m | 5 m |
Temporal resolution | 1 min | 30 s |
Laser source | InGaAs pulsed diode | InGaAs pulsed diode |
Wavelength | 910 nm | 910 nm |
Operating period | November 2013–present | January 2017–present |
Year | Station | Month | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Total | ||
2017 | Seoul_S1 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Seoul_S2 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
Taean_S1 | 100 | 99.8 | 87.1 | 99.9 | 99.9 | 99.8 | 99.9 | 99.4 | 99.8 | 99.8 | 99.9 | 97.1 | 98.5 | |
Taean_S2 | 99.6 | 99.3 | 94.8 | 98.3 | 99.7 | 98.3 | 98.4 | 96.8 | 99.7 | 99.8 | 93.3 | 79.7 | 96.5 | |
2018 | Seoul_S1 | 100 | 100 | 100 | 100 | 100 | 93.8 | 100 | 100 | 100 | 100 | 100 | 100 | 99.5 |
Seoul_S2 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 24.7 | 100 | 100 | 100 | 100 | 93.7 | |
Taean_S1 | 87.7 | 99.9 | 99.8 | 96.0 | 99.9 | 98.7 | 85.5 | 95.5 | 97.0 | 96.8 | 99.7 | 97.1 | 96.1 | |
Taean_S2 | 90.3 | 99.5 | 40.6 | 54.7 | 99.6 | 99.8 | 67.7 | 93.5 | 96.0 | 98.1 | 51.7 | 43.5 | 77.9 | |
2019 | Seoul_S1 | 100 | 100 | 100 | 99.9 | 95.0 | 100 | 100 | 74.2 | 0 | 36.8 | 100 | 98.8 | 83.7 |
Seoul_S2 | 100 | 100 | 100 | 100 | 100 | 65.6 | 38.7 | 100 | 100 | 75.5 | 73.3 | 100 | 87.8 | |
Taean_S1 | 99.0 | 99.9 | 100 | 95.3 | 99.9 | 88.7 | 97.7 | 99.9 | 94.7 | 99.5 | 94.3 | 94.8 | 97.1 | |
Taean_S2 | 94.5 | 99.9 | 99.8 | 96.0 | 99.7 | 90.7 | 90.0 | 99.4 | 85.3 | 98.4 | 93.3 | 94.5 | 95.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Kim, S.-W.; Hwang, S.-O.; Choi, J.N.; Ahn, K.-B.; Kim, J. Comparative Analysis of the Cloud Behavior over Inland and Coastal Regions within Single Climate Characteristics. Atmosphere 2020, 11, 1316. https://doi.org/10.3390/atmos11121316
Lee S, Kim S-W, Hwang S-O, Choi JN, Ahn K-B, Kim J. Comparative Analysis of the Cloud Behavior over Inland and Coastal Regions within Single Climate Characteristics. Atmosphere. 2020; 11(12):1316. https://doi.org/10.3390/atmos11121316
Chicago/Turabian StyleLee, Sanghee, Sug-Whan Kim, Seung-On Hwang, Ji Nyeong Choi, Ki-Beom Ahn, and Jinho Kim. 2020. "Comparative Analysis of the Cloud Behavior over Inland and Coastal Regions within Single Climate Characteristics" Atmosphere 11, no. 12: 1316. https://doi.org/10.3390/atmos11121316
APA StyleLee, S., Kim, S. -W., Hwang, S. -O., Choi, J. N., Ahn, K. -B., & Kim, J. (2020). Comparative Analysis of the Cloud Behavior over Inland and Coastal Regions within Single Climate Characteristics. Atmosphere, 11(12), 1316. https://doi.org/10.3390/atmos11121316