Projection of Future Summer Precipitation over the Yellow River Basin: A Moisture Budget Perspective
Abstract
:1. Introduction
2. Models, Data and Methods
2.1. Reanalysis Data
2.2. CMIP6 Models
2.3. Methods
2.3.1. Moisture Flux
2.3.2. Moisture Budget
3. Results
3.1. Climatological Summer Precipitation over the YRB
3.2. Projection of Future Summer Precipitation over the YRB
3.3. Mechanism of Projected Summer Precipitation: From a Moisture Budget Perspective
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cai, X.; Rosegrant, M.W. Optional water development strategies for the Yellow River Basin: Balancing agricultural and ecological water demands. Water Resour. Res. 2004, 40, W08S04. [Google Scholar] [CrossRef] [Green Version]
- McVicar, T.R.; Van Niel, T.G.; Li, L.; Hutchinson, M.F.; Mu, X.; Liu, Z. Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. J. Hydrol. 2007, 338, 196–220. [Google Scholar] [CrossRef]
- Yuan, F.; Berndtsson, R.; Uvo, C.B.; Zhang, L.; Jiang, P. Summer precipitation prediction in the source region of the Yellow River using climate indices. Hydrol. Res. 2016, 47, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ding, R.; Wu, Z.; Zhong, Q.; Li, B.; Li, J. Inter-decadal change in potential predictability of the East Asian summer monsoon. Theor. Appl. Clim. 2019, 136, 403–415. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, M.; Li, J.; Yang, X.; Zhang, N.; Chen, H. Diurnal Variations in Summer Precipitation over the Yellow River Basin. Adv. Meteorol. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Liang, K.; Bai, P.; Li, J.; Liu, C. Variability of temperature extremes in the Yellow River basin during 1961–2011. Quat. Int. 2014, 336, 52–64. [Google Scholar] [CrossRef]
- Ma, L.; Xia, H.; Sun, J.; Wang, H.; Feng, G.; Qin, F. Spatial–Temporal Variability of Hydrothermal Climate Conditions in the Yellow River Basin from 1957 to 2015. Atmosphere 2018, 9, 433. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Jing, W.; Zhao, J.; Liu, X.; Huang, Z. Characteristics of the Temporal Variation in Temperature and Precipitation in China’s Lower Yellow River Region. Adv. Meteorol. 2014, 2014, 1–15. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Jin, J.; Weinberg, J.; Bao, Z.; Liu, C.; Liu, Y.; Yan, X.; Song, X.; Zhai, R. Impacts of climate change on water resources in the Yellow River basin and identification of global adaptation strategies. Mitig. Adapt. Strat. Glob. Chang. 2017, 22, 67–83. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z. Effects of climate change on water resources in China. Clim. Res. 2011, 47, 77–82. [Google Scholar] [CrossRef]
- He, Y.; Mu, X.; Gao, P.; Zhao, G.; Wang, F.; Sun, W.; Zhang, Y. Spatial Variability and Periodicity of Precipitation in the Middle Reaches of the Yellow River, China. Adv. Meteorol. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Li, C.; Hu, H.; Lei, Z.; Yang, S.; Kusuda, T.; Koike, T.; Musiake, K. Analysis of water resources variability in the Yellow River of China during the last half century using historical data. Water Resour. Res. 2004, 40, W065021–W0650212. [Google Scholar] [CrossRef]
- Yu, X.; Xie, X.; Meng, S. Modeling the Responses of Water and Sediment Discharge to Climate Change in the Upper Yellow River Basin, China. J. Hydrol. Eng. 2017, 22, 5017026. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.; Li, D.; Deng, W. Summer droughts in the northern Yellow River basin in association with recent Arctic ice loss. Int. J. Clim. 2015, 35, 2849–2859. [Google Scholar] [CrossRef]
- Yuan, F.; Ma, M.; Ren, L.; Shen, H.; Li, Y.; Jiang, S.; Yang, X.; Zhao, C.; Kong, H. Possible Future Climate Change Impacts on the Hydrological Drought Events in the Weihe River Basin, China. Adv. Meteorol. 2016, 2016, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Maskey, S.; Uhlenbrook, S. Downscaling daily precipitation over the Yellow River source region in China: A comparison of three statistical downscaling methods. Theor. Appl. Clim. 2013, 112, 447–460. [Google Scholar] [CrossRef]
- Su, F.; Zhang, L.; Ou, T.; Chen, D.; Yao, T.; Tong, K.; Qi, Y. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Glob. Planet. Chang. 2016, 136, 82–95. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, W.; Ren, L.; Zhang, M.R.; Jiang, S.H. Potential impact of climate change to the future streamflow of Yellow River Basin based on CMIP5 data. Proc. IAHS 2018, 376, 97–104. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, X.; Liu, L.; Zhang, R.; Xu, H.; Wang, Y.; Li, J. Effects of convection over the Tibetan Plateau on rainstorms downstream of the Yangtze River Basin. Atmos. Res. 2019, 219, 24–35. [Google Scholar] [CrossRef]
- Liang, P.; He, J.H.; Chen, L.X.; Li, W. Anomalous moisture sources for the severe precipitation over North China during summer. Plateau Meteor. 2007, 26, 460–465. (In Chinese) [Google Scholar]
- Zhao, Y.; Xu, X.D.; Zhao, T.L.; Yang, X.J. Effects of the Tibetan Plateau and its second staircase terrain on rainstorms over North China: From the perspective of water vapor transport. Int. J. Climatol. 2019, 39, 3121–3133. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Gao, S.; Liang, L.; Deng, D.-F.; Gong, H. Multi-scale characteristics of moisture transport during a rainstorm process in North China. Atmos. Res. 2014, 145–146, 189–204. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, D.; Li, J.; Chen, D.; Chang, Y.; Li, J.; Qin, R. Enhancement of the summer extreme precipitation over North China by interactions between moisture convergence and topographic settings. Clim. Dyn. 2020, 54, 2713–2730. [Google Scholar] [CrossRef] [Green Version]
- Seager, R.; Naik, N.; Vecchi, G.A. Thermodynamic and Dynamic Mechanisms for Large-Scale Changes in the Hydrological Cycle in Response to Global Warming. J. Clim. 2010, 23, 4651–4668. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.; Neelin, J.D. Mechanisms of Global Warming Impacts on Regional Tropical Precipitation. J. Clim. 2004, 17, 2688–2701. [Google Scholar] [CrossRef] [Green Version]
- Xie, P.; Arkin, P.A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 1997, 78, 2539–2558. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Zhou, T.; Chen, X.; Zhang, L. Future changes in precipitation over Central Asia based on CMIP6 projections. Environ. Res. Lett. 2020, 15, 54009. [Google Scholar] [CrossRef]
- Min, S.-K.; Park, E.-H.; Kwon, W.-T. Future Projections of East Asian Climate Change from Multi-AOGCM Ensembles of IPCC SRES Scenario Simulations. J. Meteorol. Soc. Jpn. 2004, 82, 1187–1211. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Frauenfeld, O.W. A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J. Geophys. Res. Atmos. 2014, 119, 5767–5786. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, X.; Li, J.; Zhang, R.; Kang, Y.; Huang, W.; Xia, Y.; Liu, D.; Sun, X. The Large-Scale Circulation Patterns Responsible for Extreme Precipitation Over the North China Plain in Midsummer. J. Geophys. Res. Atmos. 2019, 124, 12794–12809. [Google Scholar] [CrossRef] [Green Version]
- Hsu, P.C.; Li, T.; Luo, J.J.; Murakami, H.; Zhao, M. Increase of global monsoon area and precipitation under global warming: A robust signal? Geophys. Res. Lett. 2012, 39, 6701. [Google Scholar] [CrossRef] [Green Version]
- Seo, K.; Ok, J.; Son, J.-H.; Cha, D.-H. Assessing Future Changes in the East Asian Summer Monsoon Using CMIP5 Coupled Models. J. Clim. 2013, 26, 7662–7675. [Google Scholar] [CrossRef]
- Fu, G.; Chen, S.; Liu, C.; Shepard, D. Hydro-Climatic Trends of the Yellow River Basin for the Last 50 Years. Clim. Chang. 2004, 65, 149–178. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y. The Variability of the Asian Summer Monsoon. J. Meteorol. Soc. Jpn. 2007, 85, 21–54. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.-J. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res. Space Phys. 2005, 110, D08104. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhou, T.; Neale, R.B.; Wu, X.; Zhang, G.J. Performance of the New NCAR CAM3.5 in East Asian Summer Monsoon Simulations: Sensitivity to Modifications of the Convection Scheme. J. Clim. 2010, 23, 3657–3675. [Google Scholar] [CrossRef]
- Xin, X.-G.; Wu, T.; Zhang, J.; Yao, J.; Fang, Y. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int. J. Clim. 2020, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Wang, B. Future change of global monsoon in the CMIP5. Clim. Dyn. 2014, 42, 101–119. [Google Scholar] [CrossRef] [Green Version]
- Tokarska, K.B.; Stolpe, M.B.; Sippel, S.; Fischer, E.M.; Smith, C.J.; Lehner, F.; Knutti, R. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 2020, 6, eaaz9549. [Google Scholar] [CrossRef] [Green Version]
- Zhan, W.; He, X.; Sheffield, J.; Wood, E.F. Projected Seasonal Changes in Large-Scale Global Precipitation and Temperature Extremes Based on the CMIP5 Ensemble. J. Clim. 2020, 33, 5651–5671. [Google Scholar] [CrossRef] [Green Version]
- Hsu, P.C.; Li, T.; Murakami, H.; Kitoh, A. Future change of the global monsoon revealed from 19 CMIP5 models. J. Geophys. Res. Atmos. 2013, 118, 1247–1260. [Google Scholar] [CrossRef]
- Zhao, F.F.; Xu, Z.X.; Huang, J.X. Long-term trend and abrupt change for major climate variables in the upper Yellow River Basin. J. Meteorol. Res. 2007, 21, 204–214. [Google Scholar]
- Zhang, G.-H.; Fu, S.-H.; Fang, W.-H.; Imura, H.; Zhang, X.-C. Potential Effects of Climate Change on Runoff in the Yellow River Basin of China. Trans. ASABE 2007, 50, 911–918. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, R.; Wen, M.; Kim, B.-J.; Nam, J.-C. Interannual Variation of the South Asian High and Its Relation with Indian and East Asian Summer Monsoon Rainfall. J. Clim. 2015, 28, 2623–2634. [Google Scholar] [CrossRef]
- Kusunoki, S.; Arakawa, O. Change in the precipitation intensity of the East Asian summer monsoon projected by CMIP3 models. Clim. Dyn. 2011, 38, 2055–2072. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-H.; Min, S.-K.; Zhang, X.; Sillmann, J.; Sandstad, M. Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather. Clim. Extremes 2020, 29, 100269. [Google Scholar] [CrossRef]
- Zhu, Y.; Lin, Z.; Wang, J.; Zhao, Y.; He, F. Impacts of Climate Changes on Water Resources in Yellow River Basin, China. Procedia Eng. 2016, 154, 687–695. [Google Scholar] [CrossRef] [Green Version]
- Fu, G.; Charles, S.P.; Yu, J.; Liu, C. Decadal Climatic Variability, Trends, and Future Scenarios for the North China Plain. J. Clim. 2009, 22, 2111–2123. [Google Scholar] [CrossRef]
No. | Model Acronym | Institute/Country | Horizon Resolution (lon × lat) |
---|---|---|---|
1 | AWI-CM-1-1-MR | Alfred Wegener Institute (AWI)/Germany | 0.9375° × ~0.9272° |
2 | CAMS-CSM1-0 | Chinese Academy of Meteorological Sciences (CAMS)/China | 1.125° × ~1.112° |
3 | CanESM5 | Canadian Centre for Climate Modelling and Analysis (CCCma)/Canada | 2.8125° × ~2.7673° |
4 | CMCC-CM2-SR5 | Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC)/Italy | 1.25° × ~0.9° |
5 | FGOALS-g3 | Chinese Academy of Sciences (CAS)/China | 2° × ~5.18° |
6 | MPI-ESM1-2-LR | Max Planck Institute for Meteorology (MPI-M)/Germany | 1.875° × 1.85° |
7 | MPI-ESM1-2-HR | MPI-M/Germany | 0.9375° × ~0.9272° |
8 | MRI-ESM2-0 | Meteorological Research Institute of Japan Meteorological Agency (MRI)/Japan | 1.125° × ~1.11° |
9 | MIROC6 | Center for Climate System Research (CCSR), National Institute for Environmental Studies (NIES), Frontier Research Center for Global Change (FRCGC)/Japan | 1.40625° × ~1.39° |
10 | NESM3 | Nanjing University of Information Science and Technology (NUIST)/China | 1.875° × ~1.7° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhao, Y.; Tang, Z. Projection of Future Summer Precipitation over the Yellow River Basin: A Moisture Budget Perspective. Atmosphere 2020, 11, 1307. https://doi.org/10.3390/atmos11121307
Li J, Zhao Y, Tang Z. Projection of Future Summer Precipitation over the Yellow River Basin: A Moisture Budget Perspective. Atmosphere. 2020; 11(12):1307. https://doi.org/10.3390/atmos11121307
Chicago/Turabian StyleLi, Jiao, Yang Zhao, and Zhenfei Tang. 2020. "Projection of Future Summer Precipitation over the Yellow River Basin: A Moisture Budget Perspective" Atmosphere 11, no. 12: 1307. https://doi.org/10.3390/atmos11121307
APA StyleLi, J., Zhao, Y., & Tang, Z. (2020). Projection of Future Summer Precipitation over the Yellow River Basin: A Moisture Budget Perspective. Atmosphere, 11(12), 1307. https://doi.org/10.3390/atmos11121307