Aerosol Effective Radiative Forcing in the Online Aerosol Coupled CAS-FGOALS-f3-L Climate Model
Abstract
:1. Introduction
2. Model and Method
2.1. Model Description
2.2. Method
3. Results
3.1. Aerosol–Radiation Interactions
3.1.1. Aerosol Optical Depth
3.1.2. Aerosol–Radiation Interactions
3.2. Aerosol–Cloud Interactions
3.2.1. Cloud Physical Properties
3.2.2. Aerosol–Cloud Interactions
3.3. Effective Radiative Forcing
4. Discussion
5. Conclusions
- (1)
- The total AOD in the year 2014 (global mean, 0.111) increases about 39% (0.031) relative to the year 1850 (global mean, 0.08), mainly due to the increase of anthropogenic aerosols. The sulfate and the carbonaceous aerosol contribute to about 71% (0.022) and 29% (0.009).
- (2)
- The global mean 2014–1850 shortwave effective radiative forcing of aerosol-radiation interactions (ERFari) produced by CAS-FGOALS-f3-L (−0.27 W m−2) is close to the multimodel mean value from 4 available CMIP6 models (−0.29 W m−2). The pattern of the shortwave ERFari in CAS-FGOALS-f3-L are comparable with other models except the GFDL-ESM4. The GFDL-ESM4 model shows the strongest positive shortwave ERFari (+0.24 W m−2), mainly due to its warming effect of absorbing black carbon is stronger than the cooling effect of scattering aerosols (i.e., sulfate and organic carbon).
- (3)
- The global mean 2014–1850 shortwave effective radiative forcing of aerosol-cloud interactions (ERFaci) produced by CAS-FGOALS-f3-L (−1.04 W m−2) is slightly stronger than the multi-model mean value from the four available CMIP6 models (−0.78 W m−2). The spatial distribution of the shortwave ERFaci in CAS-FGOALS-f3-L are consistent with the other four model results. The shortwave ERFaci is closely associated with changes in column-integrated cloud droplet number concentration (CDNC), cloud drop effective radius, liquid water path (LWP), and cloud fraction (CF). The MRI-ESM2-0 model shows the strongest negative shortwave ERFaci (−2.45 W m−2), which may be partly attributed to being coupled to the aerosols-ice cloud interaction [52].
- (4)
- The global mean 2014–1850 shortwave effective radiative forcing (ERFSW) produced by CAS-FGOALS-f3-L (−1.36 W m−2) shows a stronger negative forcing relative to the multi-model mean value from 11 available CMIP6 models (−1.07 W m−2), and the pattern are also comparable, illustrating that the new coupled model can reasonably reproduce the aerosol radiation effect. The ERF is mainly dominated by the ERFaci, and the uncertainty of the ERF is still large, especially for the ERFaci.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Andreae, M.O.; Asmi, A.; Chin, M.; de Leeuw, G.; Donovan, D.P.; Kahn, R.; Kinne, S.; Kivekäs, N.; Kulmala, M.; et al. Global observations of aerosol-cloud-precipitation-climate interactions. Rev. Geophys. 2014, 52, 750–808. [Google Scholar] [CrossRef] [Green Version]
- Twomey, S. Aerosols, clouds and radiation. Atmos. Environ. Part A. Gen. Top. 1991, 25, 2435–2442. [Google Scholar] [CrossRef]
- Qian, Y.; Yasunari, T.J.; Doherty, S.J.; Flanner, M.G.; Lau, W.K.M.; Ming, J.; Wang, H.; Wang, M.; Warren, S.G.; Zhang, R. Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact. Adv. Atmos. Sci. 2015, 32, 64–91. [Google Scholar] [CrossRef]
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 571–657. [Google Scholar]
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 659–740. [Google Scholar]
- Forster, P.M.; Richardson, T.; Maycock, A.C.; Smith, C.J.; Samset, B.H.; Myhre, G.; Andrews, T.; Pincus, R.; Schulz, M. Recommendations for diagnosing effective radiative forcing from climate models for CMIP6. J. Geophys. Res. Atmos. 2016, 121, 12460–12475. [Google Scholar] [CrossRef]
- Pincus, R.; Forster, P.M.; Stevens, B. The Radiative Forcing Model Intercomparison Project (RFMIP): Experimental protocol for CMIP6. Geosci. Model Dev. 2016, 9, 3447–3460. [Google Scholar] [CrossRef] [Green Version]
- Carslaw, K.S.; Lee, L.A.; Reddington, C.L.; Pringle, K.J.; Rap, A.; Forster, P.M.; Mann, G.W.; Spracklen, D.V.; Woodhouse, M.T.; Regayre, L.A.; et al. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 2013, 503, 67–71. [Google Scholar] [CrossRef]
- Heyn, I.; Block, K.; Mülmenstädt, J.; Gryspeerdt, E.; Kühne, P.; Salzmann, M.; Quaas, J. Assessment of simulated aerosol effective radiative forcings in the terrestrial spectrum. Geophys. Res. Lett. 2017, 44, 1001–1007. [Google Scholar] [CrossRef] [Green Version]
- Collins, W.J.; Lamarque, J.F.; Schulz, M.; Boucher, O.; Eyring, V.; Hegglin, M.I.; Maycock, A.; Myhre, G.; Prather, M.; Shindell, D.; et al. AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6. Geosci. Model Dev. 2017, 10, 585–607. [Google Scholar] [CrossRef] [Green Version]
- Bao, Q.; Wu, X.; Li, J.; Wang, L.; He, B.; Wang, X.; Liu, Y.; Wu, G. Outlook for El Niño and the Indian Ocean Dipole in autumn-winter 2018–2019. Chin. Sci. Bull. 2019, 64, 73. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Bao, Q.; Wang, X.; Zhou, L.; Wu, X.; Liu, Y.; Wu, G.; Chen, K.; He, S.; Hu, W.; et al. CAS FGOALS-f3-L Model Datasets for CMIP6 Historical Atmospheric Model Intercomparison Project Simulation. Adv. Atmos. Sci. 2019, 36, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Bao, Q.; Liu, Y.; Wu, G.; Wang, L.; He, B.; Wang, X.; Li, J. Evaluation of FAMIL2 in Simulating the Climatology and Seasonal-to-Interannual Variability of Tropical Cyclone Characteristics. J. Adv. Model. Earth Syst. 2019, 11, 1117–1136. [Google Scholar] [CrossRef]
- Zhou, L.; Bao, Q.; Liu, Y.; Wu, G.; Wang, W.-C.; Wang, X.; He, B.; Yu, H.; Li, J. Global energy and water balance: Characteristics from Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1). J. Adv. Model. Earth Syst. 2015, 7, 1–20. [Google Scholar] [CrossRef]
- Lin, S.-J. A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models. Mon. Weather Rev. 2004, 132, 2293–2307. [Google Scholar] [CrossRef] [Green Version]
- Putman, W.M.; Lin, S.-J. Finite-volume transport on various cubed-sphere grids. J. Comput. Phys. 2007, 227, 55–78. [Google Scholar] [CrossRef]
- Lamarque, J.-F.; Emmons, L.; Hess, P.; Kinnison, D.; Tilmes, S.; Vitt, F.; Heald, C.; Holland, E.; Lauritzen, P.; Neu, J.; et al. CAM-chem: Description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geosci. Model Dev. 2012, 5, 369–411. [Google Scholar] [CrossRef] [Green Version]
- Takemura, T.; Okamoto, H.; Maruyama, Y.; Numaguti, A.; Higurashi, A.; Nakajima, T. Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J. Geophys. Res. Atmos. 2000, 105, 17853–17874. [Google Scholar] [CrossRef]
- Takemura, T.; Nakajima, T.; Dubovik, O.; Holben, B.N.; Kinne, S. Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Clim. 2002, 15, 333–352. [Google Scholar] [CrossRef]
- Takemura, T. Simulation of climate response to aerosol direct and indirects with aerosol transport-radiation model. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Takemura, T.; Egashira, M.; Matsuzawa, K.; Ichijo, H.; O’ishi, R.; Abe-Ouchi, A. A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum. Atmos. Chem. Phys. 2009, 9, 3061–3073. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Dai, T.; Daisuke, G.; Bao, Q.; He, B.; Liu, Y.; Takemura, T.; Nakajima, T.; Shi, G. Simulating and Evaluating the Global Aerosol Distributions with the Online Aerosol Coupled CAS-FGOALS Model. J. Geophys. Res. Atmos. (under review).
- Bao, Q.; Wu, G.; Liu, Y.; Yang, J.; Wang, Z.; Zhou, T. An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci. 2010, 27, 1131–1142. [Google Scholar] [CrossRef]
- Bao, Q.; Lin, P.; Zhou, T.; Liu, Y.; Yu, Y.; Wu, G.; He, B.; He, J.; Li, L.; Li, J.; et al. The Flexible Global Ocean-Atmosphere-Land system model, Spectral Version 2: FGOALS-s2. Adv. Atmos. Sci. 2013, 30, 561–576. [Google Scholar] [CrossRef]
- Wu, G.; Hui, L.; Yucheng, Z.; Li, W. A Nine-layer Atmospheric General Circulation Model and Its Performance. Adv. Atmos. Sci. 1996, 13, 1–18. [Google Scholar]
- Li, J.-X.; Bao, Q.; Liu, Y.-M.; Wu, G.-X. Evaluation of the computational performance of the finite-volume atmospheric model of the IAP/LASG (FAMIL) on a high-performance computer. Atmos. Ocean. Sci. Lett. 2017, 10, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Liu, Y.; Bao, Q.; Yu, H.; Wu, G. Computational Performance of the High-Resolution Atmospheric Model FAMIL. Atmos. Ocean. Sci. Lett. 2012, 5, 355–359. [Google Scholar]
- Bretherton, C.S.; Park, S. A New Moist Turbulence Parameterization in the Community Atmosphere Model. J. Clim. 2009, 22, 3422–3448. [Google Scholar] [CrossRef]
- Clough, S.; Shephard, M.; Mlawer, E.J.; Delamere, J.S.; Iacono, M.J.; Cady-Pereira, K.; Boukabara, S.A.; Brown, P. Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 233–244. [Google Scholar] [CrossRef]
- Harris, L.M.; Lin, S.-J. Global-to-Regional Nested Grid Climate Simulations in the GFDL High Resolution Atmospheric Model. J. Clim. 2014, 27, 4890–4910. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk Parameterization of the Snow Field in a Cloud Model. J. Clim. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Lin, S.-J.; Chen, J.-H.; Harris, L.M.; Chen, X.; Rees, S.L. Toward Convective-Scale Prediction within the Next Generation Global Prediction System. Bull. Am. Meteorol. Soc. 2019, 100, 1225–1243. [Google Scholar] [CrossRef]
- Xu, K.-M.; Randall, D.A. A Semiempirical Cloudiness Parameterization for Use in Climate Models. J. Atmos. Sci. 1996, 53, 3084–3102. [Google Scholar] [CrossRef] [Green Version]
- Oleson, K.W.; Lawrence, D.M.; Gordon, B.; Flanner, M.G.; Kluzek, E.; Peter, J.; Levis, S.; Swenson, S.C.; Thornton, E.; Feddema, J. Technical Description of Version 4.0 of the Community Land Model (CLM); NCAR Technical Note NCAR/TN-478+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2010; p. 173. [Google Scholar]
- Hunke, E.C.; Lipscomb, W.H.; Turner, A.K.; Jeffery, N.; Elliott, S. CICE: The Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 4.1; Tech. Rep LA-CC-06-012; T-3 Fluid Dynamics Group: Los Alamos, NM, USA, 2010; p. 675. [Google Scholar]
- Goto, D.; Nakajima, T.; Takemura, T.; Sudo, K. A study of uncertainties in the sulfate distribution and its adiative forcing associated with sulfur chemistry in a global aerosol model. Atmos. Chem. Phys. 2011, 11, 10889–11091. [Google Scholar] [CrossRef] [Green Version]
- Dai, T.; Goto, D.; Schutgens, N.A.J.; Dong, X.; Shi, G.; Nakajima, T. Simulated aerosol key optical properties over global scale using an aerosol transport model coupled with a new type of dynamic core. Atmos. Environ. 2014, 82, 71–82. [Google Scholar] [CrossRef]
- Dai, T.; Cheng, Y.; Zhang, P.; Shi, G.; Sekiguchi, M.; Suzuki, K.; Goto, D.; Nakajima, T. Impacts of meteorological nudging on the global dust cycle simulated by NICAM coupled with an aerosol model. Atmos. Environ. 2018, 190, 99–115. [Google Scholar] [CrossRef]
- Hoesly, R.; Smith, S.; Feng, L.; Klimont, Z.; Janssens-Maenhout, G.; Pitkanen, T.; Seibert, J.; Vu, L.; Andres, R.; Bolt, R.; et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 2018, 11, 369–408. [Google Scholar] [CrossRef] [Green Version]
- van Marle, M.J.E.; Kloster, S.; Magi, B.I.; Marlon, J.R.; Daniau, A.L.; Field, R.D.; Arneth, A.; Forrest, M.; Hantson, S.; Kehrwald, N.M.; et al. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev. 2017, 10, 3329–3357. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Razzak, H.; Ghan, S.J. A parameterization of aerosol activation: 2. Multiple aerosol types. J. Geophys. Res. Atmos. 2000, 105, 6837–6844. [Google Scholar] [CrossRef]
- Berry, E.X. Modification of the Warm Rain Process, 1st National Conference on Weather Modification; American Meteorology Society: New York, NY, USA, 1968; pp. 81–85. [Google Scholar]
- Sato, Y.; Goto, D.; Michibata, T.; Suzuki, K.; Takemura, T.; Tomita, H.; Nakajima, T. Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model. Nat. Commun. 2018, 9, 985. [Google Scholar] [CrossRef]
- Ghan, S.J. Technical Note: Estimating aerosol effects on cloud radiative forcing. Atmos. Chem. Phys. 2013, 13, 9971–9974. [Google Scholar] [CrossRef] [Green Version]
- Grandey, B.S.; Rothenberg, D.; Avramov, A.; Jin, Q.; Lee, H.-H.; Liu, X.; Lu, Z.; Albani, S.; Wang, C. Effective radiative forcing in the aerosol–climate model CAM5.3-MARC-ARG. Atmos. Chem. Phys. 2018, 18, 15783–15810. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.L.; Perlwitz, J.; Tegen, I. Feedback upon dust emission by dust radiative forcing through the planetary boundary layer. J. Geophys. Res. Atmos. 2004, 109, D24209. [Google Scholar] [CrossRef]
- Rothenberg, D.; Wang, C. An aerosol activation metamodel of v1.2.0 of the pyrcel cloud parcel model: Development and offline assessment for use in an aerosol–climate model. Geosci. Model Dev. 2017, 10, 1817–1833. [Google Scholar] [CrossRef]
- Liu, X.; Easter, R.C.; Ghan, S.J.; Zaveri, R.; Rasch, P.; Shi, X.; Lamarque, J.F.; Gettelman, A.; Morrison, H.; Vitt, F.; et al. Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev. 2012, 5, 709–739. [Google Scholar] [CrossRef] [Green Version]
- Gryspeerdt, E.; Sourdeval, O.; Quaas, J.; Delanoë, J.; Krämer, M.; Kühne, P. Ice crystal number concentration estimates from lidar–radar satellite remote sensing—Part 2: Controls on the ice crystal number concentration. Atmos. Chem. Phys. 2018, 18, 14351–14370. [Google Scholar] [CrossRef] [Green Version]
- Gryspeerdt, E.; Muelmenstadt, J.; Gettelman, A.; Malavelle, F.F.; Morrison, H.; Neubauer, D.; Partridge, D.G.; Stier, P.; Takemura, T.; Wang, H.; et al. Surprising similarities in model and observational aerosol radiative forcing estimates. Atmos. Chem. Phys. 2020, 20, 613–623. [Google Scholar] [CrossRef] [Green Version]
- Zelinka, M.D.; Andrews, T.; Forster, P.M.; Taylor, K.E. Quantifying components of aerosol-cloud-radiation interactions in climate models. J. Geophys. Res-Atmos. 2014, 119, 7599–7615. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Zhang, F.; Zhang, J.; Jie, W.; Zhang, Y.; Wu, F.; Li, L.; Yan, J.; Liu, X.; Lu, X.; et al. Beijing Climate Center Earth System Model version 1 (BCC-ESM1): Model description and evaluation of aerosol simulations. Geosci. Model Dev. 2020, 13, 977–1005. [Google Scholar] [CrossRef] [Green Version]
- Bellouin, N.; Quaas, J.; Gryspeerdt, E.; Kinne, S.; Stier, P.; Watson-Parris, D.; Boucher, O.; Carslaw, K.S.; Christensen, M.; Daniau, A.L.; et al. Bounding Global Aerosol Radiative Forcing of Climate Change. Rev. Geophys. 2020, 58, e2019RG000660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, G.W.; Carslaw, K.S.; Reddington, C.L.; Pringle, K.J.; Schulz, M.; Asmi, A.; Spracklen, D.V.; Ridley, D.A.; Woodhouse, M.T.; Lee, L.A.; et al. Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity. Atmos. Chem. Phys. 2014, 14, 4679–4713. [Google Scholar] [CrossRef] [Green Version]
SW | LW | NET | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ERFari | ERFaci | ΔSRE | ERF | ERFari | ERFaci | ΔSRE | ERF | ERFari | ERFaci | ΔSRE | ERF | |
ACCESS-CM2 | −1.39 | 0.30 | −1.09 | |||||||||
BCC-ESM1 | −3.90 | 0.29 | −3.61 | |||||||||
CNRM-CM6-1 | −0.42 | −0.74 | −0.08 | −1.25 | 0.00 | −0.05 | 0.14 | 0.09 | −0.42 | −0.79 | 0.06 | −1.15 |
CNRM-ESM2-1 | −0.22 | −0.59 | −0.01 | −0.82 | 0.00 | −0.02 | 0.09 | 0.08 | −0.21 | −0.61 | 0.08 | −0.74 |
CanESM5 | −0.83 | −0.02 | −0.85 | |||||||||
EC-Earth3 | −0.84 | 0.03 | −0.80 | |||||||||
GFDL-ESM4 | 0.24 | −0.77 | −0.05 | −0.59 | 0.02 | −0.15 | 0.02 | −0.11 | 0.26 | −0.92 | −0.03 | −0.70 |
GFDL_CM4 | −0.80 | 0.07 | −0.73 | |||||||||
GISS-E2-1-G | −1.06 | 0.13 | −0.93 | |||||||||
HadGEM3-GC31-LL | −1.29 | 0.19 | −1.10 | |||||||||
IPSL-CM6A-LR | −0.60 | 0.01 | −0.59 | |||||||||
MIROC6 | −1.61 | 0.60 | −1.01 | |||||||||
MRI-ESM2-0 | −0.32 | −2.45 | 0.05 | −2.73 | 0.00 | 1.48 | 0.04 | 1.52 | −0.32 | −0.97 | 0.09 | −1.20 |
UKESM1-0-LL | −0.20 | −1.02 | −0.06 | −1.28 | 0.05 | 0.01 | 0.11 | 0.17 | −0.15 | −1.01 | 0.06 | −1.10 |
NorESM2-LM | −2.82 | 1.37 | 0.04 | −1.41 | 0.04 | 0.16 | 0.01 | 0.21 | −2.79 | 1.52 | 0.05 | −1.21 |
NorESM2-MM | −2.95 | 1.43 | 0.06 | −1.46 | 0.03 | 0.06 | 0.10 | 0.20 | −2.91 | 1.49 | 0.16 | −1.26 |
AVERAGE | −0.29 | −0.78 | −0.03 | −1.07 | 0.01 | −0.05 | 0.08 | 0.12 | −0.28 | −0.83 | 0.05 | −0.92 |
STDEV | 0.10 | 0.18 | 0.05 | 0.31 | 0.03 | 0.07 | 0.05 | 0.17 | 0.12 | 0.17 | 0.05 | 0.19 |
This study | −0.27 | −1.04 | −0.05 | −1.36 | 0.05 | −0.04 | 0.08 | 0.09 | −0.22 | −1.09 | 0.03 | −1.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Dai, T.; Zhao, M.; Goto, D.; Bao, Q.; Takemura, T.; Nakajima, T.; Shi, G. Aerosol Effective Radiative Forcing in the Online Aerosol Coupled CAS-FGOALS-f3-L Climate Model. Atmosphere 2020, 11, 1115. https://doi.org/10.3390/atmos11101115
Wang H, Dai T, Zhao M, Goto D, Bao Q, Takemura T, Nakajima T, Shi G. Aerosol Effective Radiative Forcing in the Online Aerosol Coupled CAS-FGOALS-f3-L Climate Model. Atmosphere. 2020; 11(10):1115. https://doi.org/10.3390/atmos11101115
Chicago/Turabian StyleWang, Hao, Tie Dai, Min Zhao, Daisuke Goto, Qing Bao, Toshihiko Takemura, Teruyuki Nakajima, and Guangyu Shi. 2020. "Aerosol Effective Radiative Forcing in the Online Aerosol Coupled CAS-FGOALS-f3-L Climate Model" Atmosphere 11, no. 10: 1115. https://doi.org/10.3390/atmos11101115
APA StyleWang, H., Dai, T., Zhao, M., Goto, D., Bao, Q., Takemura, T., Nakajima, T., & Shi, G. (2020). Aerosol Effective Radiative Forcing in the Online Aerosol Coupled CAS-FGOALS-f3-L Climate Model. Atmosphere, 11(10), 1115. https://doi.org/10.3390/atmos11101115