Experimental Characterization Protocols for Wear Products from Disc Brake Materials
Abstract
:1. Introduction
2. Brake Pad and Disc Materials
2.1. Brake Pads
2.2. Cast Iron Discs
3. Brake Wear Products: Sampling Techniques
3.1. Simulator Studies
3.1.1. Dynamometer
3.1.2. Pin-on-Disc
3.2. Source Apportionment: Trace Elements for Brake Wear
4. Characterization of Brake Wear Products
4.1. Characterization of Bulk Brake Materials
4.2. Characterization of the Friction Layer
4.3. Characterizing Wear Debris
5. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Health Effects Institute. State of Global Air 2019. Available online: https://www.stateofglobalair.org/report (accessed on 4 August 2020).
- Kumar, P.; Pirjola, L.; Ketzel, M.; Harrison, R.M. Nanoparticle emissions from 11 non-vehicle exhaust sources–A review. Atmos. Environ. 2013, 67, 252–277. [Google Scholar] [CrossRef] [Green Version]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef]
- Andersen, Z.J.; Wahlin, P.; Raaschou-Nielsen, O.; Ketzel, M.; Scheike, T.; Loft, S. Size distribution and total number concentration of ultrafine and accumulation mode particles and hospital admissions in children and the elderly in Copenhagen, Denmark. Occup. Environ. Med. 2008, 65, 458–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Q.; Hong, X.; Wold, L.E. Cardiovascular Effects of Ambient Particulate Air Pollution Exposure. Circulation 2010, 121, 2755–2765. [Google Scholar] [CrossRef] [PubMed]
- Grigoratos, T.; Martini, G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Pitz, M.; Schnelle-Kreis, J.; Diemer, J.; Reller, A.; Zimmermann, R.; Soentgen, J.; Stoelzel, M.; Wichmann, H.-E.; Peters, A.; et al. Source apportionment of ambient particles: Comparison of positive matrix factorization analysis applied to particle size distribution and chemical composition data. Atmos. Environ. 2011, 45, 1849–1857. [Google Scholar] [CrossRef]
- Morawska, L.; Thomas, S.; Jamriska, M.; Johnson, G. The modality of particle size distributions of environmental aerosols. Atmos. Environ. 1999, 33, 4401–4411. [Google Scholar] [CrossRef]
- Beddows, D.C.S.; Dall’Osto, M.; Olatunbosun, O.A.; Harrison, R.M. Detection of brake wear aerosols by aerosol time-of-flight mass spectrometry. Atmos. Environ. 2016, 129, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Adamiec, E.; Jarosz-Krzemińska, E.; Wieszała, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016, 188, 369. [Google Scholar] [CrossRef] [Green Version]
- Amato, F.; Cassee, F.R.; Denier van der Gon, H.A.C.; Gehrig, R.; Gustafsson, M.; Hafner, W.; Harrison, R.M.; Jozwicka, M.; Kelly, F.J.; Moreno, T.; et al. Urban air quality: The challenge of traffic non-exhaust emissions. J. Hazard. Mater. 2014, 275, 31–36. [Google Scholar] [CrossRef]
- Peikertova, P.; Filip, P. Influence of the Automotive Brake Wear Debris on the Environment-A Review of Recent Research. SAE Int. J. Mater. Manuf. 2016, 9, 133–146. [Google Scholar] [CrossRef]
- Straffelini, G.; Maines, L. The relationship between wear of semimetallic friction materials and pearlitic cast iron in dry sliding. Wear 2013, 307, 75–80. [Google Scholar] [CrossRef]
- Ketzel, M.; Omstedt, G.; Johansson, C.; Düring, I.; Pohjola, M.; Oettl, D.; Gidhagen, L.; Wåhlin, P.; Lohmeyer, A.; Haakana, M.; et al. Estimation and validation of PM2.5/PM10 exhaust and non-exhaust emission factors for practical street pollution modelling. Atmos. Environ. 2007, 41, 9370–9385. [Google Scholar] [CrossRef]
- Perricone, G.; Alemani, M.; Wahlström, J.; Olofsson, U. A proposed driving cycle for brake emissions investigation for test stand. Proc. Inst. Mech. Eng. Part J. Automob. Eng. 2020, 234, 122–135. [Google Scholar] [CrossRef]
- Farrow, K.; Oueslati, W. Non-Exhaust Emissions from Road Transport. Causes, Consequences and Policy Responses; Environment directorate, Environment policy committee, OECD: Paris, France, 2020. [Google Scholar]
- Alemani, M.; Nosko, O.; Metinoz, I.; Olofsson, U. A Study on Emission of Airborne Wear Particles from Car Brake Friction Pairs. SAE Int. J. Mater. Manuf. 2016, 9, 147–157. [Google Scholar] [CrossRef]
- Menapace, C.; Mancini, A.; Federici, M.; Straffelini, G.; Gialanella, S. Characterization of airborne wear debris produced by brake pads pressed against HVOF-coated discs. Frict. Heidelb. 2020, 8, 421–432. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.M.; Jones, A.M.; Gietl, J.; Yin, J.; Green, D.C. Estimation of the Contributions of Brake Dust, Tire Wear, and Resuspension to Nonexhaust Traffic Particles Derived from Atmospheric Measurements. Environ. Sci. Technol. 2012, 46, 6523–6529. [Google Scholar] [CrossRef]
- Olofsson, U.; Olander, L.; Jansson, A. A Study of Airborne Wear Particles Generated From a Sliding Contact. J. Tribol. 2009, 131, 044503. [Google Scholar] [CrossRef]
- Straffelini, G.; Ciudin, R.; Ciotti, A.; Gialanella, S. Present knowledge and perspectives on the role of copper in brake materials and related environmental issues: A critical assessment. Environ. Pollut. 2015, 207, 211–219. [Google Scholar] [CrossRef]
- Kukutschová, J.; Roubíček, V.; Malachová, K.; Pavlíčková, Z.; Holuša, R.; Kubačková, J.; Mička, V.; MacCrimmon, D.; Filip, P. Wear mechanism in automotive brake materials, wear debris and its potential environmental impact. Wear 2009, 267, 807–817. [Google Scholar] [CrossRef] [Green Version]
- Roubicek, V.; Raclavska, H.; Juchelkova, D.; Filip, P. Wear and environmental aspects of composite materials for automotive braking industry. Wear 2008, 265, 167–175. [Google Scholar] [CrossRef]
- Sanders, P.G.; Xu, N.; Dalka, T.M.; Maricq, M.M. Airborne Brake Wear Debris: Size Distributions, Composition, and a Comparison of Dynamometer and Vehicle Tests. Environ. Sci. Technol. 2003, 37, 4060–4069. [Google Scholar] [CrossRef] [PubMed]
- Křístková, M.; Weiss, Z.; Filip, P. Hydration properties of vermiculite in phenolic resin friction composites. Appl. Clay Sci. 2004, 25, 229–236. [Google Scholar] [CrossRef]
- Wahlström, J.; Söderberg, A.; Olander, L.; Olofsson, U.; Jansson, A. Airborne wear particles from passenger car disc brakes: A comparison of measurements from field tests, a disc brake assembly test stand, and a pin-on-disc machine. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2010, 224, 179–188. [Google Scholar] [CrossRef]
- Cha, S.; Carter, P.; Bradow, R.L. Simulation of Automobile Brake Wear Dynamics and Estimation of Emissions. SAE Trans. 1983, 92, 502–522. [Google Scholar]
- Garg, B.D.; Cadle, S.H.; Mulawa, P.A.; Groblicki, P.J.; Laroo, C.; Parr, G.A. Brake Wear Particulate Matter Emissions. Environ. Sci. Technol. 2000, 34, 4463–4469. [Google Scholar] [CrossRef]
- Iijima, A.; Sato, K.; Yano, K.; Tago, H.; Kato, M.; Kimura, H.; Furuta, N. Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. Atmos. Environ. 2007, 41, 4908–4919. [Google Scholar] [CrossRef]
- Perricone, G.; Alemani, M.; Metinöz, I.; Matějka, V.; Wahlström, J.; Olofsson, U. Towards the ranking of airborne particle emissions from car brakes – a system approach. Proc. Inst. Mech. Eng. Part J. Automob. Eng. 2017, 231, 781–797. [Google Scholar] [CrossRef]
- Thorpe, A.J.; Harrison, R.M.; Boulter, P.G.; McCrae, I.S. Estimation of particle resuspension source strength on a major London Road. Atmos. Environ. 2007, 41, 8007–8020. [Google Scholar] [CrossRef]
- Sarnat, J.A.; Schwartz, J.; Suh, H.H. Fine particulate air pollution and mortality in 20 U.S. cities. N. Engl. J. Med. 2001, 344, 1253–1254. [Google Scholar] [CrossRef]
- Iii, C.A.P.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Ghio, A.J. Disruption of iron homeostasis and lung disease. Biochim. Biophys. Acta BBA Gen. Subj. 2009, 1790, 731–739. [Google Scholar] [CrossRef]
- Ghio, A.J.; Silbajoris, R.; Carson, J.L.; Samet, J.M. Biologic effects of oil fly ash. Environ. Health Perspect. 2002, 110, 89–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menapace, C.; Leonardi, M.; Perricone, G.; Bortolotti, M.; Straffelini, G.; Gialanella, S. Pin-on-disc study of brake friction materials with ball-milled nanostructured components. Mater. Des. 2017, 115, 287–298. [Google Scholar] [CrossRef]
- Chan, D.; Stachowiak, G.W. Review of automotive brake friction materials. Proc. Inst. Mech. Eng. Part J. Automob. Eng. 2004, 218, 953–966. [Google Scholar] [CrossRef]
- Österle, W.; Dmitriev, A.I. The Role of Solid Lubricants for Brake Friction Materials. Lubricants 2016, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Wahid, S.M.S. Automotive brake wear: A review. Environ. Sci. Pollut. Res. 2018, 25, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.V.; Kumaran, S.S. Friction material composite: Types of brake friction material formulations and effects of various ingredients on brake performance–a review. Mater. Res. Express 2019, 6, 082005. [Google Scholar] [CrossRef]
- Satapathy, B.K.; Bijwe, J. Analysis of simultaneous influence of operating variables on abrasive wear of phenolic composites. Wear 2002, 253, 787–794. [Google Scholar] [CrossRef]
- Smales, H. Friction Materials—Black Art or Science? Proc. Inst. Mech. Eng. Part J. Automob. Eng. 1995, 209, 151–157. [Google Scholar] [CrossRef]
- Newcomb, T.P.; Spurr, R.T. Friction materials for brakes. Tribology 1971, 4, 75–81. [Google Scholar] [CrossRef]
- Verma, P.C.; Menapace, L.; Bonfanti, A.; Ciudin, R.; Gialanella, S.; Straffelini, G. Braking pad-disc system: Wear mechanisms and formation of wear fragments. Wear 2015, 322–323, 251–258. [Google Scholar] [CrossRef]
- Kukutschová, J.; Filip, P. Chapter 6-Review of Brake Wear Emissions: A Review of Brake Emission Measurement Studies: Identification of Gaps and Future Needs. In Non-Exhaust Emissions; Amato, F., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 123–146. ISBN 978-0-12-811770-5. [Google Scholar]
- Sellami, A.; Kchaou, M.; Elleuch, R.; Cristol, A.-L.; Desplanques, Y. Study of the interaction between microstructure, mechanical and tribo-performance of a commercial brake lining material. Mater. Des. 2014, 59, 84–93. [Google Scholar] [CrossRef]
- Alemani, M.; Wahlström, J.; Olofsson, U. On the influence of car brake system parameters on particulate matter emissions. Wear 2018, 396–397, 67–74. [Google Scholar] [CrossRef]
- Perricone, G.; Matějka, V.; Alemani, M.; Valota, G.; Bonfanti, A.; Ciotti, A.; Olofsson, U.; Söderberg, A.; Wahlström, J.; Nosko, O.; et al. A concept for reducing PM10 emissions for car brakes by 50%. Wear 2018, 396–397, 135–145. [Google Scholar] [CrossRef]
- Kukutschová, J.; Roubíček, V.; Mašláň, M.; Jančík, D.; Slovák, V.; Malachová, K.; Pavlíčková, Z.; Filip, P. Wear performance and wear debris of semimetallic automotive brake materials. Wear 2010, 268, 86–93. [Google Scholar] [CrossRef]
- Federici, M.; Alemani, M.; Menapace, C.; Gialanella, S.; Perricone, G.; Straffelini, G. A critical comparison of dynamometer data with pin-on-disc data for the same two friction material pairs–A case study. Wear 2019, 424–425, 40–47. [Google Scholar] [CrossRef]
- Straffelini, G. Friction and Wear: Methodologies for Design and Control; Springer Tracts in Mechanical Engineering: Cham, Switzerland; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-05893-1. [Google Scholar]
- Federici, M.; Gialanella, S.; Leonardi, M.; Perricone, G.; Straffelini, G. A preliminary investigation on the use of the pin-on-disc test to simulate off-brake friction and wear characteristics of friction materials. Wear 2018, 410–411, 202–209. [Google Scholar] [CrossRef]
- Cho, M.H.; Kim, S.J.; Kim, D.; Jang, H. Effects of ingredients on tribological characteristics of a brake lining: An experimental case study. Wear 2005, 258, 1682–1687. [Google Scholar] [CrossRef]
- Neis, P.D.; Ferreira, N.F.; Fekete, G.; Matozo, L.T.; Masotti, D. Towards a better understanding of the structures existing on the surface of brake pads. Tribol. Int. 2017, 105, 135–147. [Google Scholar] [CrossRef]
- Wahlström, J.; Söderberg, A.; Olander, L.; Jansson, A.; Olofsson, U. A pin-on-disc simulation of airborne wear particles from disc brakes. Wear 2010, 268, 763–769. [Google Scholar] [CrossRef]
- Menapace, C.; Leonardi, M.; Matějka, V.; Gialanella, S.; Straffelini, G. Dry sliding behavior and friction layer formation in copper-free barite containing friction materials. Wear 2018, 398–399, 191–200. [Google Scholar] [CrossRef]
- Aranganathan, N.; Bijwe, J. Development of copper-free eco-friendly brake-friction material using novel ingredients. Wear 2016, 352–353, 79–91. [Google Scholar] [CrossRef]
- Straffelini, G.; Verma, P.C.; Metinoz, I.; Ciudin, R.; Perricone, G.; Gialanella, S. Wear behavior of a low metallic friction material dry sliding against a cast iron disc: Role of the heat-treatment of the disc. Wear 2016, 348–349, 10–16. [Google Scholar] [CrossRef]
- Sundarkrishnaa, K.L. Friction Material Composites: Copper-/Metal-Free Material Design Perspective; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-319-14069-8. [Google Scholar]
- Riahi, A.R.; Alpas, A.T. Wear map for grey cast iron. Wear 2003, 255, 401–409. [Google Scholar] [CrossRef]
- Dizdar, S.; Lyu, Y.; Lampa, C.; Olofsson, U. Grey Cast Iron Brake Discs Laser Cladded with Nickel-Tungsten Carbide—Friction, Wear and Airborne Wear Particle Emission. Atmosphere 2020, 11, 621. [Google Scholar] [CrossRef]
- Djafri, M.; Bouchetara, M.; Busch, C.; Weber, S. Effects of humidity and corrosion on the tribological behaviour of the brake disc materials. Wear 2014, 321, 8–15. [Google Scholar] [CrossRef]
- Noh, H.J.; Jang, H. Friction instability induced by iron and iron oxides on friction material surface. Wear 2018, 400–401, 93–99. [Google Scholar] [CrossRef]
- Blau, P.J.; Meyer, H.M. Characteristics of wear particles produced during friction tests of conventional and unconventional disc brake materials. Wear 2003, 255, 1261–1269. [Google Scholar] [CrossRef]
- Grieve, D.G.; Barton, D.C.; Crolla, D.A.; Buckingham, J.T. Design of a lightweight automotive brake disc using finite element and Taguchi techniques. Proc. Inst. Mech. Eng. Part J. Automob. Eng. 1998, 212, 245–254. [Google Scholar] [CrossRef]
- Bensalah, W.; Elleuch, K.; Feki, M.; DePetris-Wery, M.; Ayedi, H.F. Comparative study of mechanical and tribological properties of alumina coatings formed on aluminium in various conditions. Mater. Des. 2009, 30, 3731–3737. [Google Scholar] [CrossRef]
- Bolelli, G.; Cannillo, V.; Lusvarghi, L.; Manfredini, T. Wear behaviour of thermally sprayed ceramic oxide coatings. Wear 2006, 261, 1298–1315. [Google Scholar] [CrossRef]
- Alnaqi, A.A.; Kosarieh, S.; Barton, D.C.; Brooks, P.C.; Shrestha, S. Material characterisation of lightweight disc brake rotors. Proc. Inst. Mech. Eng. Part J. Mater. Des. Appl. 2018, 232, 555–565. [Google Scholar] [CrossRef] [Green Version]
- Thornton, R.; Slatter, T.; Jones, A.H.; Lewis, R. The effects of cryogenic processing on the wear resistance of grey cast iron brake discs. Wear 2011, 271, 2386–2395. [Google Scholar] [CrossRef]
- Nadig, D.S.; Shivakumar, P.; Anoop, S.; Chinmay, K.; Divine, P.V.; Harsha, H.P. Effects of cryogenic treatment on the wear properties of brake discs. IOP Conf. Ser. Mater. Sci. Eng. 2017, 171, 012152. [Google Scholar] [CrossRef] [Green Version]
- Haseeb, A.S.M.A.; Islam, M.A.; Bepari, M.M.A. Tribological behaviour of quenched and tempered, and austempered ductile iron at the same hardness level. Wear 2000, 244, 15–19. [Google Scholar] [CrossRef]
- Federici, M.; Menapace, C.; Moscatelli, A.; Gialanella, S.; Straffelini, G. Pin-on-disc study of a friction material dry sliding against HVOF coated discs at room temperature and 300 °C. Tribol. Int. 2017, 115, 89–99. [Google Scholar] [CrossRef]
- Anderson, A.E.; Gratch, S.; Hayes, H.P. A New Laboratory Friction and Wear Test for the Characterization of Brake Linings; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1967; p. 670079. [Google Scholar]
- Sanders, P.G.; Dalka, T.M.; Basch, R.H. A reduced-scale brake dynamometer for friction characterization. Tribol. Int. 2001, 34, 609–615. [Google Scholar] [CrossRef]
- Perzborn, N.; Agudelo, C.; Ostermeyer, G.P. On Similarities and Differences of Measurements on Inertia Dynamometer and Scale Testing Tribometer for Friction Coefficient Evaluation. SAE Int. J. Mater. Manuf. 2015, 8, 104–117. [Google Scholar] [CrossRef]
- Burkman, A.J.; Hishley, F.H. Laboratory Evaluation of Brake Lining Materials; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1967; p. 670510. [Google Scholar]
- Hagino, H.; Oyama, M.; Sasaki, S. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles. Atmos. Environ. 2016, 131, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Wahlström, J.; Söderberg, A.; Olander, L.; Olofsson, U. A disc brake test stand for measurement of airborne wear particles. Lubr. Sci. 2009, 21, 241–252. [Google Scholar] [CrossRef]
- Nosko, O.; Olofsson, U. Quantification of ultrafine airborne particulate matter generated by the wear of car brake materials. Wear 2017, 374–375, 92–96. [Google Scholar] [CrossRef]
- Sanders, P.G.; Dalka, T.M.; Xu, N.; Maricq, M.M.; Basch, R.H. Brake Dynamometer Measurement of Airborne Brake Wear Debris. SAE Trans. 2002, 111, 1693–1699. [Google Scholar]
- Hagino, H.; Oyama, M.; Sasaki, S. Airborne brake wear particle emission due to braking and accelerating. Wear 2015, 334–335, 44–48. [Google Scholar] [CrossRef]
- Chasapidis, L.; Grigoratos, T.; Zygogianni, A.; Tsakis, A.; Konstandopoulos, A.G. Study of Brake Wear Particle Emissions of a Minivan on a Chassis Dynamometer. Emiss. Control Sci. Technol. 2018, 4, 271–278. [Google Scholar] [CrossRef] [Green Version]
- zum Hagen, F.H.F.; Mathissen, M.; Grabiec, T.; Hennicke, T.; Rettig, M.; Grochowicz, J.; Vogt, R.; Benter, T. Study of Brake Wear Particle Emissions: Impact of Braking and Cruising Conditions. Environ. Sci. Technol. 2019, 53, 5143–5150. [Google Scholar] [CrossRef]
- zum Hagen, F.H.F.; Mathissen, M.; Grabiec, T.; Hennicke, T.; Rettig, M.; Grochowicz, J.; Vogt, R.; Benter, T. On-road vehicle measurements of brake wear particle emissions. Atmos. Environ. 2019, 217, 116943. [Google Scholar] [CrossRef]
- Perricone, G.; Wahlström, J.; Olofsson, U. Towards a test stand for standardized measurements of the brake emissions. Proc. Inst. Mech. Eng. Part J. Automob. Eng. 2016, 230, 1521–1528. [Google Scholar] [CrossRef]
- Bijwe, J. Composites as friction materials: Recent developments in non-asbestos fiber reinforced friction materials—A review. Polym. Compos. 1997, 18, 378–396. [Google Scholar] [CrossRef]
- Straffelini, G.; Pellizzari, M.; Molinari, A. Influence of load and temperature on the dry sliding behaviour of Al-based metal-matrix-composites against friction material. Wear 2004, 256, 754–763. [Google Scholar] [CrossRef]
- Söderberg, A.; Wahlström, J.; Olander, L.; Jansson, A.; Olofsson, U. On Airborne Wear Particles Emissions of Commercial Disc Brake Materials–A Pin on Disc Simulation. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-37246 (accessed on 21 September 2020).
- Wahlström, J.; Gventsadze, D.; Olander, L.; Kutelia, E.; Gventsadze, L.; Tsurtsumia, O.; Olofsson, U. A pin-on-disc investigation of novel nanoporous composite-based and conventional brake pad materials focussing on airborne wear particles. Tribol. Int. 2011, 44, 1838–1843. [Google Scholar] [CrossRef]
- Verma, P.C.; Alemani, M.; Gialanella, S.; Lutterotti, L.; Olofsson, U.; Straffelini, G. Wear debris from brake system materials: A multi-analytical characterization approach. Tribol. Int. 2016, 94, 249–259. [Google Scholar] [CrossRef]
- Mosleh, M.; Blau, P.J.; Dumitrescu, D. Characteristics and morphology of wear particles from laboratory testing of disk brake materials. Wear 2004, 256, 1128–1134. [Google Scholar] [CrossRef]
- Lyu, Y.; Leonardi, M.; Wahlström, J.; Gialanella, S.; Olofsson, U. Friction, wear and airborne particle emission from Cu-free brake materials. Tribol. Int. 2020, 141, 105959. [Google Scholar] [CrossRef]
- Viana, M.; Kuhlbusch, T.A.J.; Querol, X.; Alastuey, A.; Harrison, R.M.; Hopke, P.K.; Winiwarter, W.; Vallius, M.; Szidat, S.; Prévôt, A.S.H.; et al. Source apportionment of particulate matter in Europe: A review of methods and results. J. Aerosol Sci. 2008, 39, 827–849. [Google Scholar] [CrossRef]
- Santoso, M.; Lestiani, D.D.; Markwitz, A. Characterization of airborne particulate matter collected at Jakarta roadside of an arterial road. J. Radioanal. Nucl. Chem. 2013, 297, 165–169. [Google Scholar] [CrossRef]
- Amato, F. Non-Exhaust Emissions: An Urban Air Quality Problem for Public Health. In Impact and Mitigation Measures; Academic Press: Cambridge, MA, USA, 2018; ISBN 978-0-12-811751-4. [Google Scholar]
- Harrison, R.M.; Beddows, D.C.S.; Dall’Osto, M. PMF Analysis of Wide-Range Particle Size Spectra Collected on a Major Highway. Environ. Sci. Technol. 2011, 45, 5522–5528. [Google Scholar] [CrossRef]
- Hopke, P.K. Review of receptor modeling methods for source apportionment. J. Air Waste Manag. Assoc. 1995 2016, 66, 237–259. [Google Scholar] [CrossRef]
- Union, P.O. of the E. European Guide on Air Pollution Source Apportionment with Receptor Models: Revised Version 2019. Available online: http://op.europa.eu/en/publication-detail/-/publication/b83f25e6-b273-11e9-9d01-01aa75ed71a1/language-en (accessed on 21 September 2020).
- Galvão, E.S.; D’Azeredo Orlando, M.T.; Santos, J.M.; Lima, A.T. Uncommon chemical species in PM2.5 and PM10 and its potential use as industrial and vehicular markers for source apportionment studies. Chemosphere 2020, 240, 124953. [Google Scholar] [CrossRef]
- Cho, M.H.; Ju, J.; Kim, S.J.; Jang, H. Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials. Wear 2006, 260, 855–860. [Google Scholar] [CrossRef]
- Lee, W.K.; Rhee, T.H.; Kim, H.S.; Jang, H. Effects of antimony trisulfide (Sb2S3) on sliding friction of automotive brake friction materials. Met. Mater. Int. 2013, 19, 1101–1107. [Google Scholar] [CrossRef]
- Bettella, M.; Harrison, M.F.; Sharp, R.S. Investigation of automotive creep groan noise with a distributed-source excitation technique. J. Sound Vib. 2002, 255, 531–547. [Google Scholar] [CrossRef]
- Varrica, D.; Bardelli, F.; Dongarrà, G.; Tamburo, E. Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues. Atmos. Environ. 2013, 64, 18–24. [Google Scholar] [CrossRef]
- Yan, G.; Mao, L.; Jiang, B.; Chen, X.; Gao, Y.; Chen, C.; Li, F.; Chen, L. The source apportionment, pollution characteristic and mobility of Sb in roadside soils affected by traffic and industrial activities. J. Hazard. Mater. 2020, 384, 121352. [Google Scholar] [CrossRef]
- Budai, P.; Clement, A. Spatial distribution patterns of four traffic-emitted heavy metals in urban road dust and the resuspension of brake-emitted particles: Findings of a field study. Transp. Res. Part Transp. Environ. 2018, 62, 179–185. [Google Scholar] [CrossRef]
- Iijima, A.; Sato, K.; Yano, K.; Kato, M.; Kozawa, K.; Furuta, N. Emission Factor for Antimony in Brake Abrasion Dusts as One of the Major Atmospheric Antimony Sources. Environ. Sci. Technol. 2008, 42, 2937–2942. [Google Scholar] [CrossRef]
- Pant, P.; Baker, S.J.; Shukla, A.; Maikawa, C.; Godri Pollitt, K.J.; Harrison, R.M. The PM10 fraction of road dust in the UK and India: Characterization, source profiles and oxidative potential. Sci. Total Environ. 2015, 530–531, 445–452. [Google Scholar] [CrossRef]
- Schauer, J.J.; Lough, G.C.; Shafer, M.M.; Christensen, W.F.; Arndt, M.F.; DeMinter, J.T.; Park, J.S. Characterization of metals emitted from motor vehicles. Res. Rep. Health Eff. Inst. 2006, 133, 1–76. [Google Scholar]
- Hulskotte, J.H.J.; Roskam, G.D.; Denier van der Gon, H.A.C. Elemental composition of current automotive braking materials and derived air emission factors. Atmos. Environ. 2014, 99, 436–445. [Google Scholar] [CrossRef]
- Faullant, P. Particle size effects of tin sulfides in disc brake pads. SAE Tech. Pap. 2002, undefined–undefined. [Google Scholar] [CrossRef]
- Copper-Free Brake Initiative. Available online: https://www.epa.gov/npdes/copper-free-brake-initiative (accessed on 8 September 2020).
- Wåhlin, P.; Berkowicz, R.; Palmgren, F. Characterisation of traffic-generated particulate matter in Copenhagen. Atmos. Environ. 2006, 40, 2151–2159. [Google Scholar] [CrossRef]
- Österle, W.; Deutsch, C.; Gradt, T.; Orts-Gil, G.; Schneider, T.; Dmitriev, A.I. Tribological screening tests for the selection of raw materials for automotive brake pad formulations. Tribol. Int. 2014, 73, 148–155. [Google Scholar] [CrossRef]
- Gietl, J.K.; Lawrence, R.; Thorpe, A.J.; Harrison, R.M. Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos. Environ. 2010, 44, 141–146. [Google Scholar] [CrossRef]
- Jeong, C.-H.; Wang, J.M.; Hilker, N.; Debosz, J.; Sofowote, U.; Su, Y.; Noble, M.; Healy, R.M.; Munoz, T.; Dabek-Zlotorzynska, E.; et al. Temporal and spatial variability of traffic-related PM2.5 sources: Comparison of exhaust and non-exhaust emissions. Atmos. Environ. 2019, 198, 55–69. [Google Scholar] [CrossRef]
- Alves, D.D.; Riegel, R.P.; Klauck, C.R.; Ceratti, A.M.; Hansen, J.; Cansi, L.M.; Pozza, S.A.; de Quevedo, D.M.; Osório, D.M.M. Source apportionment of metallic elements in urban atmospheric particulate matter and assessment of its water-soluble fraction toxicity. Environ. Sci. Pollut. Res. 2020, 27, 12202–12214. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.; Kim, H.; Lee, J.; Lee, S. Characterization of non-exhaust coarse and fine particles from on-road driving and laboratory measurements. Sci. Total Environ. 2013, 458–460, 273–282. [Google Scholar] [CrossRef]
- Birmili, W.; Allen, A.G.; Bary, F.; Harrison, R.M. Trace Metal Concentrations and Water Solubility in Size-Fractionated Atmospheric Particles and Influence of Road Traffic. Environ. Sci. Technol. 2006, 40, 1144–1153. [Google Scholar] [CrossRef]
- Valotto, G.; Zannoni, D.; Rampazzo, G.; Visin, F.; Formenton, G.; Gasparello, A. Characterization and preliminary risk assessment of road dust collected in Venice airport (Italy). J. Geochem. Explor. 2018, 190, 142–153. [Google Scholar] [CrossRef]
- Prakash, J.; Lohia, T.; Mandariya, A.K.; Habib, G.; Gupta, T.; Gupta, S.K. Chemical characterization and quantitativ e assessment of source-specific health risk of trace metals in PM1.0 at a road site of Delhi, India. Environ. Sci. Pollut. Res. 2018, 25, 8747–8764. [Google Scholar] [CrossRef]
- Xue, W.; Xue, J.; Mousavi, A.; Sioutas, C.; Kleeman, M.J. Positive matrix factorization of ultrafine particle mass (PM0.1) at three sites in California. Sci. Total Environ. 2020, 715, 136902. [Google Scholar] [CrossRef]
- Acquafredda, P. XRF technique. Phys. Sci. Rev. 2019, 4, 20180171. [Google Scholar] [CrossRef]
- Streli, C.; Wobrauschek, P.; Kregsamer, P. X-Ray Fluorescence Spectroscopy, Applications. In Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Lindon, J.C., Tranter, G.E., Koppenaal, D.W., Eds.; Academic Press: Oxford, UK, 2017; pp. 707–715. ISBN 978-0-12-803224-4. [Google Scholar]
- Verma, P.C.; Ciudin, R.; Bonfanti, A.; Aswath, P.; Straffelini, G.; Gialanella, S. Role of the friction layer in the high-temperature pin-on-disc study of a brake material. Wear 2016, 346–347, 56–65. [Google Scholar] [CrossRef]
- Alemani, M.; Gialanella, S.; Straffelini, G.; Ciudin, R.; Olofsson, U.; Perricone, G.; Metinoz, I. Dry sliding of a low steel friction material against cast iron at different loads: Characterization of the friction layer and wear debris. Wear 2017, 376–377, 1450–1459. [Google Scholar] [CrossRef]
- Malachova, K.; Kukutschova, J.; Rybkova, Z.; Sezimova, H.; Placha, D.; Cabanova, K.; Filip, P. Toxicity and mutagenicity of low-metallic automotive brake pad materials. Ecotoxicol. Environ. Saf. 2016, 131, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Lutterotti, L.; Matthies, S.; Wenk, H.-R.; Schultz, A.S.; Richardson, J.W. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phys. 1997, 81, 594–600. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Menapace, C.; Leonardi, M.; Secchi, M.; Bonfanti, A.; Gialanella, S.; Straffelini, G. Thermal behavior of a phenolic resin for brake pad manufacturing. J. Therm. Anal. Calorim. 2019, 137, 759–766. [Google Scholar] [CrossRef]
- Wei, L.; Choy, Y.S.; Cheung, C.S. A study of brake contact pairs under different friction conditions with respect to characteristics of brake pad surfaces. Tribol. Int. 2019, 138, 99–110. [Google Scholar] [CrossRef]
- Matějka, V.; Metinöz, I.; Wahlström, J.; Alemani, M.; Perricone, G. On the running-in of brake pads and discs for dyno bench tests. Tribol. Int. 2017, 115, 424–431. [Google Scholar] [CrossRef]
- Österle, W.; Prietzel, C.; Kloß, H.; Dmitriev, A.I. On the role of copper in brake friction materials. Tribol. Int. 2010, 43, 2317–2326. [Google Scholar] [CrossRef]
- Eriksson, M.; Bergman, F.; Jacobson, S. On the nature of tribological contact in automotive brakes. Wear 2002, 252, 26–36. [Google Scholar] [CrossRef]
- Österle, W.; Dmitriev, A.I. Functionality of conventional brake friction materials–Perceptions from findings observed at different length scales. Wear 2011, 271, 2198–2207. [Google Scholar] [CrossRef]
- Cho, M.H.; Cho, K.H.; Kim, S.J.; Kim, D.H.; Jang, H. The Role of Transfer Layers on Friction Characteristics in the Sliding Interface between Friction Materials against Gray Iron Brake Disks. Tribol. Lett. 2005, 20, 101–108. [Google Scholar] [CrossRef]
- Kukutschová, J.; Moravec, P.; Tomášek, V.; Matějka, V.; Smolík, J.; Schwarz, J.; Seidlerová, J.; Šafářová, K.; Filip, P. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes. Environ. Pollut. 2011, 159, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Österle, W.; Prietzel, C.; Dmitriev, A.I. Investigation of surface film nanostructure and assessment of its impact on friction force stabilization during automotive braking. Int. J. Mater. Res. 2010, 101, 669–675. [Google Scholar] [CrossRef]
- Österle, W.; Urban, I. Third body formation on brake pads and rotors. Tribol. Int. 2006, 39, 401–408. [Google Scholar] [CrossRef]
- Filip, P.; Weiss, Z.; Rafaja, D. On friction layer formation in polymer matrix composite materials for brake applications. Wear 2002, 252, 189–198. [Google Scholar] [CrossRef]
- Österle, W.; Kloß, H.; Urban, I.; Dmitriev, A.I. Towards a better understanding of brake friction materials. Wear 2007, 263, 1189–1201. [Google Scholar] [CrossRef]
- Österle, W.; Urban, I. Friction layers and friction films on PMC brake pads. Wear 2004, 257, 215–226. [Google Scholar] [CrossRef]
- Österle, W.; Dörfel, I.; Prietzel, C.; Rooch, H.; Cristol-Bulthé, A.-L.; Degallaix, G.; Desplanques, Y. A comprehensive microscopic study of third body formation at the interface between a brake pad and brake disc during the final stage of a pin-on-disc test. Wear 2009, 267, 781–788. [Google Scholar] [CrossRef]
- Österle, W.; Griepentrog, M.; Gross, T.; Urban, I. Chemical and microstructural changes induced by friction and wear of brakes. Wear 2001, 251, 1469–1476. [Google Scholar] [CrossRef]
- Hinrichs, R.; Vasconcellos, M.A.Z.; Österle, W.; Prietzel, C. A TEM snapshot of magnetite formation in brakes: The role of the disc’s cast iron graphite lamellae in third body formation. Wear 2011, 270, 365–370. [Google Scholar] [CrossRef]
- Asadabad, M.A.; Eskandari, M.J. Transmission Electron Microscopy as Best Technique for Characterization in Nanotechnology. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2015, 45, 323–326. [Google Scholar] [CrossRef]
- Anjum, D.H. Characterization of nanomaterials with transmission electron microscopy. IOP Conf. Ser. Mater. Sci. Eng. 2016, 146, 012001. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Lewinski, N.; Riediker, M. Physico-Chemical Characterization and Oxidative Reactivity Evaluation of Aged Brake Wear Particles. Aerosol Sci. Technol. 2015, 49, 65–74. [Google Scholar] [CrossRef]
- Serafini, A.; Lutterotti, L.; Gross, S.; Gialanella, S. Characterization of nanograined powder samples using the Rietveld method applied to electron diffraction ring patterns. Powder Diffr. 2017, 32, S63–S68. [Google Scholar] [CrossRef]
- Perricone, G.; Matĕjka, V.; Alemani, M.; Wahlström, J.; Olofsson, U. A Test Stand Study on the Volatile Emissions of a Passenger Car Brake Assembly. Atmosphere 2019, 10, 263. [Google Scholar] [CrossRef] [Green Version]
- Nosko, O.; Vanhanen, J.; Olofsson, U. Emission of 1.3–10 nm airborne particles from brake materials. Aerosol Sci. Technol. 2017, 51, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Alemani, M.; Olofsson, U.; Perricone, G.; Söderberg, A.; Wahlström, J.; Ciotti, A. A Study on the Load Level Influence on Particulate Matter Emissions From the Sliding Contact Between a Low Steel Friction Material and Cast Iron. In Proceedings of the Eurobrake 2015, Dredsen, Germany, 4–6 May 2015. [Google Scholar]
- Ramousse, S.; Høj, J.W.; Sørensen, O.T. Thermal characterisation of brake pads. J. Therm. Anal. Calorim. 2001, 64, 933–943. [Google Scholar] [CrossRef]
- Bijwe, J.; Majumdar, N.; Satapathy, B.K. Influence of modified phenolic resins on the fade and recovery behavior of friction materials. Wear 2005, 259, 1068–1078. [Google Scholar] [CrossRef]
- Ingo, G.M.; D’Uffizi, M.; Falso, G.; Bultrini, G.; Padeletti, G. Thermal and microchemical investigation of automotive brake pad wear residues. Thermochim. Acta 2004, 418, 61–68. [Google Scholar] [CrossRef]
- Eddoumy, F.; Kasem, H.; Dhieb, H.; Buijnsters, J.G.; Dufrenoy, P.; Celis, J.-P.; Desplanques, Y. Role of constituents of friction materials on their sliding behavior between room temperature and 400 °C. Mater. Des. (1980–2015) 2015, 65, 179–186. [Google Scholar] [CrossRef]
- Peikertova, P.; Vaculik, M.; Filip, P.; Kukutschova, J. Raman Microspectroscopy as a Tool for Characterization of Brake Wear Debris. In Proceedings of the Nanocon 2012 4th International Conference, Brno, Czech Republic, 23–25 October 2012; pp. 842–846. [Google Scholar]
- Peikertová, P.; Kukutschová, J.; Vávra, I.; Matějka, V.; Životský, O.; Vaculík, M.; Lee, P.W.; Filip, P. Water suspended nanosized particles released from nonairborne brake wear debris. Wear 2013, 306, 89–96. [Google Scholar] [CrossRef]
- Perrenoud, A.; Gasser, M.; Rothen-Rutishauser, B.; Gehr, P.; Riediker, M. Characterisation of nanoparticles resulting from different braking behaviours. Int. J. Biomed. Nanosci. Nanotechnol. 2010, 1, 17–33. [Google Scholar] [CrossRef]
- Gasser, M.; Riediker, M.; Mueller, L.; Perrenoud, A.; Blank, F.; Gehr, P.; Rothen-Rutishauser, B. Toxic effects of brake wear particles on epithelial lung cells in vitro. Part. Fibre Toxicol. 2009, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Plachá, D.; Peikertova, P.; Kukutschova, J.; Lee, P.W.; Čabanová, K.; Karas, J.; Kuchařová, J.; Filip, P. Identification of Organic Compounds Released from Low-Metallic Automotive Model Brake Pad and its Non-Airborne Wear Particles. SAE Int. J. Mater. Manuf. 2016, 9, 123–132. [Google Scholar] [CrossRef]
- Eriksson, M.; Jacobson, S. Tribological surfaces of organic brake pads. Tribol. Int. 2000, 33, 817–827. [Google Scholar] [CrossRef]
Type | Primary Ingredients | Properties | Applications | |||
---|---|---|---|---|---|---|
Friction Coefficient | Brake Noise | Wear Rate | Fade | |||
NAO | %Fe+Cu and their alloys: 10%; Combination of inorganic fibers (glass, carbon, rubber, etc.) | Low | Less compared to the other types | Low wear rate at low temperatures; cause less rotor wear, but poor performance under heavy-duty conditions. | Poor resistance; sensitive to high temperatures | Down-sized/Compact cars. Common in the US and Japan |
LM | %Fe+Cu and their alloys: 10–50%; relatively more abrasive content | Medium to high | More than NAO types | High wear rate, with high iron content in wear debris. Additionally, cause more wear of rotor. | High resistance | Medium-sized cars. Common in the European market |
SM | %Fe+Cu and their alloys: 50–65%; steel wool fiber with iron powder | Low to Medium | High, especially in humid conditions due to corrosion | Low wear rate at high temperatures and highest durability. Less effective in extremely cold weather and also cause more rotor wear than NAO types | Average resistance | Heavy duty: commercial buses and trucks. Metallic linings suitable for extreme braking conditions (police, sports cars) |
Component | Range (by Mass) | Functions | Examples |
---|---|---|---|
Reinforcements | 6–35% | Withstanding high frictional and thermal stresses | Glass fiber, metallic fibers and particulates (e.g., steel, copper, brass), ceramics and mineral fibers (e.g., alumina, silicon carbide, wollastonite) and organic fibers (e.g., Kevlar, acrylic) |
Binders | 20–40% | Maintaining the structural integrity of the pads under the action of high thermal and mechanical loads | Phenolic resin- also used in a modified form with toughners, such as silicone and epoxy. Other less commonly used resins are cyanate ester, thermoplastic polyamide |
Fillers | 15–70% | Favoring reduction in cost and ease of manufacturing. Additionally, improve the thermal properties of the pad, with reduction in noise. | Inorganic, e.g., barium and antimony sulphate, calcium carbonate, silicates, magnesium and chromium oxides, metal powders; Organic, e.g., cashew dust, rubber particles |
Friction Modifiers: Abrasives and lubricants | Abrasives: up to 10%; Lubricants: 5–29% | Maintaining an adequate coefficient of friction. They also influence the wear rate of the disc surface and limit the size of transfer films. | Aluminium oxide, silicon carbide, quartz, and zirconium oxide and chromium oxide; Graphite, carbon black, zinc oxide, metal sulphides: e.g., antimony trisulphide, tin sulphide |
References | Brake Pads and Test Stands | Test Conditions | Particle Quantification; Sampling Efficiency | Emission Factors |
---|---|---|---|---|
Garg et al. [28] | SM and NAO; Closed disc brake dynamometer | General Motors BSL-035 driving Cycle. Clean air supply and without isokinetic sampling. 50 to 0 km/h @ deceleration of 2.94 m/s2. | TSP sampling, size-resolved by MOUDI; ~ 55% for 5 mm particle diameter | PM10, PM2.5 and PM0.1 BEFs of 2.9–7.5, 2.1–5.5 and 1.2–3.1 mg/km/vehicle respectively |
Sanders et al. [24] | LM, SM, and NAO; Open disc brake dynamometer | General Motors UDP driving cycle AMS driving cycle. Isokinetic sampling and without clean air supply. 90 to 0 km/h @ deceleration of 1.6 m/s2. | TSP sampling, size-resolved by MOUDI and ELPI; 99–97% for 2 mm particle diameter 86–67% for 10 mm particle diameter | Average PM10 BEF of 8.1 mg/km/vehicle for low-metallic, semi-metallic, and NAO |
Iijima et al. [29] | NAO; Open disc brake dynamometer | JASO C427-88 driving cycle. Without isokinetic sampling and supply of clean air. 50–80 to 0 km/h @ deceleration of 3 m/s2. | Aerodynamic particle sizer (APS,) Tokyo Dylec Co., Japan | PM10 value of 5.8 mg/km/vehicle and PM2.5 value of 3.9 mg/km/vehicle |
Hagino et al. [81] | NAO; Closed disc brake dynamometer | Own urban driving program (deceleration < 3.0 m/s2, max. speed 60 km/h). With clean air supply and without isokinetic sampling. | DustTrak + Impactor | 0.006–0.016 mg of PM10/braking/ wheel |
Hagino et al. [77] | NAO; Closed disc brake dynamometer | Wear test-JASO C427 (deceleration 2.94 m/s2, max. speed 50 km/h); Japanese exhaust emission tests (JC08/JE05) (max. speed 90 km/h). With clean air supply and without isokinetic sampling. | DustTrak + Impactor | 0.04–1.4 mg of PM10/km/vehicle 0.04–1.2 mg of PM2.5/km/vehicle |
Perricone et al. [30] | NAO, LM; Closed disk brake dynamometer | Modified SAE J 2707 (max. deceleration 3.92 m/s2, max. speed 100 km/h). With clean air supply and isokinetic sampling. | Mass of filters, Number concentration (ELPI + cascade impactor); 100–99.8% for 1 µm particle diameter, 94.5–88.2% for 10 µm particle diameter. | BEFs of 8.5–46.4 mg/stop/brake and a number emission factor of 8–153 N × 1010/stop/brake |
References | Brake Pad | Particle Monitoring/Counting Instruments | Particle Size Range (µm) | Particle Size Distributions (µm) | |
---|---|---|---|---|---|
Major | Minor | ||||
Mosleh et al. [91] | SM | Laser scattering analyzer | 0.04–262 | 0.35 | 2–15 |
Wahlström et al. [55,89]; | LM, NAO | GRIMM Aerosol Spectrometer, TSI DustTrak | 0.25–32 | 0.35 [55,89] | 0.28, 0.55 [55]; 0.550 [89] |
Verma et al., [90]; Lyu et al. [92] | LM | Dekati electrical low-pressure impactor (ELPI+) | 0.006–10 | 0.017 [90]; 0.016, 0.03, 0.054 [92] | 0.03, 0.06 [90] |
Alemani et al. [17] | LM, NAO | Optical particle sizer (OPS), ELPI+ | 0.0056–10 | 0.19–0.29, 0.011–0.034 | 0.9, 1.7 |
References | Region of Study | Trace Elements |
---|---|---|
Adamiec et al. [10] | Katowice, Poland | Ti, Cr, Cu |
Beddows et al. [9] | Birmingham, U.K. | Ba, Fe |
Budai and Clement [105] | Budapest, Hungary | Cu, Sb, Pb, Zn |
Valotto et al. [119] | Venice, Italy | Cr, Fe, Mo, Sb |
Prakash et al. [120] | Delhi, India | Fe |
Jeong et al. [115] | Toronto, Canada | Cu, Ba |
Alves et al. [116] | São Leopoldo and Canoas, Brazil | Cu, Ba |
Yan et al. [104] | Shanghai, China | Sb |
Xue et al. [121] | California, US | Sb |
Elements | NAO | LM | SM |
---|---|---|---|
Mg | 0.2–13.6 | 0.8–16.1 | 0–0.68 |
Al | 0.4–13.8 | 1.38–17.8 | 1.1–2.7 |
Si | 0.3–7.4 | 0.1–6.8 | 2.89–5.47 |
S | 1.28–9.3 | 1.71–7.7 | 0–4.62 |
K | 0–6.1 | 0–7.8 | 0–0.27 |
Ca | 1–25.57 | 0–9.34 | 0–10.08 |
Ti | 0–27.6 | 0–10.9 | 0–0.21 |
Fe | 0.7–21.2 | 4.2–59.8 | 34.38–71.3 |
Cu | 0–35.6 | 2.9–16.7 | 4.09–19.67 |
Zn | 0–14.9 | 0.6–15.8 | 0–0.75 |
Zr | 0–30.6 | 0–24.7 | 0–0.03 |
Sn | 0–7.5 | 0–9.4 | - |
Ba | 0–27.7 | 0–3.9 | - |
Sb | 0–4.01 | 0–6.94 | - |
Cr | 0–4 | 0–3.6 | 0–0.05 |
Characterization Method | References | Major Functions |
---|---|---|
SEM-EDXS | Steel [22,50,133,161]; Fe, Cu, vermiculite, ZrO2, BaSO4 and Al2O3 [44]; Fe, Cu, ZrO2 and Mg-K-silicate [52]; Fe2O3, BaSO4, ZrO2 [50]; Al, Fe, C, O, Mg, Ba, S, Sb, Cu, Si, Sn [22]; Fe [52]; C, Fe [136]; Fe, Al, S, Cu, Zn, Sn, Mg, Cr, Si, Ca [90]; Fe, Mg, Si, Al, Cu, Zn, Sn [125]; Fe, O, Cr, Ti, Al, Si, Mn, Sn, Ba, Zr, Zn, Cu [89]; | Morphology and composition of single particles at lower magnification; Chemical composition of the substrate and thick friction layer (>1 µm) |
TEM-EDXS | Cu, Fe, Ba, O [132]; C (chaoite) [139]; Cu, Fe, O, S, Ni, Zn, C [141]; Fe, Mg, Al, Si [125]; Fe, Al, S, Cu, Zn, Sn, Mg, Cr, Si, Ca [90]; Fe, O, Zn, Cu, Ca, S and Si [138]; Cu, Fe, C, Al, Si, Zn [142]; Fe, O, Cu, Si, Mg [137] | Morphology and composition of single particles at higher magnification; Analyzing thin films |
SAED | Cu, Fe3O4 [132]; Fe3O4, spinels [138]; Fe3O4,α-iron [137], Cu/brass, CuFeO2, Fe2O3, Cu2O, Fe3O4 [141]; BaSO4, Fe2O3, Cu2O, FeO, Cu, graphite [22]; γ-Fe2O3, FeO.Fe2O3, C [136]; BaSO4, Sb2S3, vermiculite, quartz, iron oxides [143]; Fe2O3, Fe3O4, MgO [90]; Fe2O3, Fe, Fe3O4 [125] | Crystallographic analysis |
XRD | Graphite, Cu Zn Fe Oxides, Fe, Cu, Zn [125]; C, ZrSiO4, Fe, Cu, Sb2S3,vermiculite, MoS2,Cu-oxides, Fe-oxides [139]; FeO, Fe, Fe2O3,MgO, ZnO, Cu [90]; Fe2O3 and Fe3O4, ZrSiO4, Sb2O5, Sb2Fe, BaSO4, (Mg0.064Ca0.936)CO3 [157] | Phase composition |
RS | Carbon black, graphite [136]; amorphous carbon [129]; CaCO3, Fe2O3, Fe3O4, SiO2, labradorite, carbon black [156]; graphite, Fe3O4 [140]; graphite(crystalline and disordered) and amorphous carbon [124]; BaSO4, CaCO3, Fe2O3, Fe3O4, MoS2, C (amorphous and graphite) [157] | Carbonaceous pad components and wear products |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinha, A.; Ischia, G.; Menapace, C.; Gialanella, S. Experimental Characterization Protocols for Wear Products from Disc Brake Materials. Atmosphere 2020, 11, 1102. https://doi.org/10.3390/atmos11101102
Sinha A, Ischia G, Menapace C, Gialanella S. Experimental Characterization Protocols for Wear Products from Disc Brake Materials. Atmosphere. 2020; 11(10):1102. https://doi.org/10.3390/atmos11101102
Chicago/Turabian StyleSinha, Ankur, Gloria Ischia, Cinzia Menapace, and Stefano Gialanella. 2020. "Experimental Characterization Protocols for Wear Products from Disc Brake Materials" Atmosphere 11, no. 10: 1102. https://doi.org/10.3390/atmos11101102
APA StyleSinha, A., Ischia, G., Menapace, C., & Gialanella, S. (2020). Experimental Characterization Protocols for Wear Products from Disc Brake Materials. Atmosphere, 11(10), 1102. https://doi.org/10.3390/atmos11101102