Predictors of the Indoor-to-Outdoor Ratio of Particle Number Concentrations in Israel
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Sample Preparation and Analysis
3. Results
3.1. Descriptive Statistics
3.2. Multivariate Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- U.S. Environmental Protection Agency. Integrated Science Assessment (ISA) for Particulate Matter (Final Report, 2019); EPA/600/R–19/188; U.S. Environmental Protection Agency: Washington, DC, USA, 2019.
- Du, Y.; Xu, X.; Chu, M.; Guo, Y.; Wang, J. Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. J. Thorac. Dis. 2016, 8, E8–E19. [Google Scholar] [CrossRef] [PubMed]
- Pavilonis, B.T.; Anthony, T.R.; O’Shaughnessy, P.T.; Humann, M.J.; Merchant, J.A.; Moore, G.; Thorne, P.S.; Weisel, C.P.; Sanderson, W.T. Indoor and outdoor particulate matter and endotoxin concentrations in an intensely agricultural county. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 299–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Buonanno, G.; Stabile, L.; Morawska, L. Personal exposure to ultrafine particles: The influence of time–activity patterns. Sci. Total Environ. 2014, 468–469, 903–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leavey, A.; Londeree, J.; Priyadarshini, P.; Puppala, J.; Schechtman, K.B.; Yadama, G.; Biswas, P. Real–time particulate and CO concentrations from cookstoves in rural households in Udaipur, India. Environ. Sci. Technol. 2015, 49, 7423–7431. [Google Scholar] [CrossRef]
- Ferro, A.R.; Kopperud, R.J.; Hildemann, L.M. Source strengths for indoor human activities that resuspend particulate matter. Environ. Sci. Technol. 2004, 38, 1759–1764. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhao, B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos. Environ. 2011, 45, 275–288. [Google Scholar] [CrossRef]
- Taylor, J.; Shrubsole, C.; Davies, M.; Biddulph, P.; Das, P.; Hamilton, I.; Vardoulakis, S.; Mavrogianni, A.; Jones, B.; Oikonomou, E. The modifying effect of the building envelope on population exposure to PM2.5 from outdoor sources. Indoor Air 2014, 24, 639–651. [Google Scholar] [CrossRef] [Green Version]
- Ganor, E.; Stupp, A.; Alpert, P. A method to determine the effect of mineral dust aerosols on air quality. Atmos. Environ. 2009, 43, 5463–5468. [Google Scholar] [CrossRef]
- Erel, Y.; Kalderon–Asael, B.; Dayan, U.; Sandler, A. European atmospheric pollution imported by cooler air masses to the Eastern Mediterranean during the summer. Environ. Sci. Technol. 2007, 41, 5198–5203. [Google Scholar] [CrossRef] [PubMed]
- Sarnat, J.A.; Moise, T.; Shpund, J.; Liu, Y.; Pachon, J.E.; Qasrawi, R.; Abdeen, Z.; Brenner, S.; Nassar, K.; Saleh, R.; et al. Assessing the spatial and temporal variability of fine particulate matter components in Israeli, Jordanian, and Palestinian cities. Atmos. Environ. 2010, 40, 2383–2392. [Google Scholar] [CrossRef]
- Kanakidou, M.; Mihalopoulos, N.; Kindap, T.; Im, U.; Vrekoussis, M.; Gerasopoulos, E.; Dermitzaki, E.; Unal, A.; Koçak, M.; Markakis, K.; et al. Megacities as hot spots of air pollution in the East Mediterranean. Atmos. Environ. 2011, 45, 1223–1235. [Google Scholar] [CrossRef]
- Wichmann, H.E.; Spix, C.; Tuch, T.; Wölke, G.; Peters, A.; Heinrich, J.; Kreyling, W.G.; Heyder, J. Daily mortality and fine and ultrafine particles in Erfurt, Germany part I: Role of particle number and particle mass. Res. Rep. (Health Eff. Inst.) 2000, 98, 5–86. [Google Scholar]
- Bischof, O.F. Recent Developments in the Measurement of Low Particulate Emissions from Mobile Sources: A Review of Particle Number Legislations. Emiss. Control. Sci. Technol. 2015, 1, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Monn, C.H.; Fuchs, A.; Högger, D.; Junker, M.; Kogelschatz, D.; Roth, N.; Hu, W. Particulate matter less than 10 μm (PM10) and fine particles less than 2.5 μm (PM2. 5): Relationships between indoor, outdoor and personal concentrations. Sci. Total Environ. 1997, 208, 15–21. [Google Scholar] [CrossRef]
- Liu, D.L.; Nazaroff, W.W. Modeling pollutant penetration across building envelopes. Atmos. Environ. 2001, 35, 4451–4462. [Google Scholar] [CrossRef] [Green Version]
- Krasnov, H.; Katra, I.; Friger, M. Insights into Indoor/Outdoor PM Concentration Ratios due to Dust Storms in an Arid Region. Atmosphere 2015, 6, 879–890. [Google Scholar] [CrossRef] [Green Version]
- Chithra, V.S.; Shiva Nagendra, S.M. Chemical and morphological characteristics of indoor and outdoor particulate matter in an urban environment. Atmos. Environ. 2013, 77, 579–587. [Google Scholar] [CrossRef]
- Chen, A.; Gall, E.T.; Chang, V.W. Indoor and outdoor particulate matter in primary school classrooms with fan–assisted natural ventilation in Singapore. Environ. Sci. Pollut. Res. Int. 2016, 23, 17613–17624. [Google Scholar] [CrossRef]
- Hystad, P.U.; Setton, E.M.; Allen, R.W.; Keller, P.C.; Brauer, M. Modeling residential fine particulate matter infiltration for exposure assessment. J. Expo. Sci. Environ. Epidemiol. 2009, 19, 570–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuval; Magen Molho, H.; Zivan, O.; Broday, D.M.; Raz, R. Application of a sensor network of low cost optical particle counters for assessing the impact of quarry emissions on its vicinity. Atmos. Environ. 2019, 211, 29–37. [Google Scholar] [CrossRef]
- Tippayawong, N.; Khuntong, P.; Nitatwichit, C.; Khunatorn, Y.; Tantakitti, C. Indoor/outdoor relationships of size–resolved particle concentrations in naturally ventilated school environments. Build. Environ. 2009, 44, 188–197. [Google Scholar] [CrossRef]
- Meier, R.; Eeftens, M.; Phuleria, H.C.; Ineichen, A.; Corradi, E.; Davey, M.; Fierz, M.; Ducret–Stich, R.E.; Aguilera, I.; Schindler, C.; et al. Differences in indoor versus outdoor concentrations of ultrafine particles, PM2.5, PMabsorbance and NO2 in Swiss homes. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 499–505. [Google Scholar] [CrossRef]
- Cyrys, J.; Pitz, M.; Bischof, W.; Wichmann, H.E.; Heinrich, J. Relationship between indoor and outdoor levels of fine particle mass, particle number concentrations and black smoke under different ventilation conditions. J. Expo. Anal. Environ. Epidemiol. 2004, 14, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Fuller, C.H.; Brugge, D.; Williams, P.L.; Mittleman, M.A.; Lane, K.; Durant, J.L.; Spengler, J.D. Indoor and outdoor measurements of particle number concentration in near–highway homes. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 506–512. [Google Scholar] [CrossRef]
- Huang, L.; Pu, Z.; Li, M.; Sundell, J. Characterizing the Indoor–Outdoor Relationship of Fine Particulate Matter in Non–Heating Season for Urban Residences in Beijing. PLoS ONE 2015, 10, e0138559. [Google Scholar] [CrossRef]
- Jones, N.C.; Thornton, C.A.; Mark, D.; Harrison, R.M. Indoor/outdoor relationships of particulate matter in domestic homes with roadside, urban and rural locations. Atmos. Environ. 2000, 34, 2603–2612. [Google Scholar] [CrossRef]
- Massey, D.; Kulshrestha, A.; Masih, J.; Taneja, A. Seasonal trends of PM10, PM5.0, PM2.5 & PM1.0 in indoor and outdoor environments of residential homes located in North–Central India. Build. Environ. 2012, 47, 223–231. [Google Scholar] [CrossRef]
- Yuval; Levi, Y.; Dayan, U.; Levy, I.; Broday, D.M. On the association between characteristics of the atmospheric boundary layer and air pollution concentrations. Atmos. Res. 2020, 231. [Google Scholar] [CrossRef]
- Perrino, C.; Tofful, L.; Canepari, S. Chemical characterization of indoor and outdoor fine particulate matter in an occupied apartment in Rome, Italy. Indoor Air 2016, 26, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Goldreich, Y. The Climate of Israel: Observation, Research and Application; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Chithra, V.S.; Shiva Nagendra, S.M. Impact of outdoor meteorology on indoor PM10, PM2.5 and PM1 concentrations in a naturally ventilated classroom. Urban. Clim. 2014, 10, 77–91. [Google Scholar] [CrossRef]
- Bozlaker, A.; Peccia, J.; Chellam, S. Indoor/Outdoor Relationships and Anthropogenic Elemental Signatures in Airborne PM2.5 at a High School: Impacts of Petroleum Refining Emissions on Lanthanoid Enrichment. Environ. Sci. Technol. 2017, 51, 4851–4859. [Google Scholar] [CrossRef] [PubMed]
- Hassanvand, M.S.; Naddafi, K.; Faridi, S.; Arhami, M.; Nabizadeh, R.; Sowlat, M.H.; Pourpak, Z.; Rastkari, N.; Momeniha, F.; Kashani, H.; et al. Indoor/outdoor relationships of PM10, PM2.5, and PM1 mass concentrations and their water–soluble ions in a retirement home and a school dormitory. Atmos. Environ. 2014, 82, 375–382. [Google Scholar] [CrossRef]
log(IORfine) | log(IORcoarse) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | CI | p-Value | Estimate | CI | p-Value | ||||
2.5% | 97.5% | 2.5% | 97.5% | ||||||
Intercept | −0.43 | −0.44 | −0.42 | <0.01 | −0.78 | −0.92 | −0.65 | <0.01 | |
Categorical Outdoor PNC | 0–2 (cm−3) | 0.34 | 0.32 | 0.36 | <0.01 | 0.26 | 0.13 | 0.39 | <0.01 |
2–10 (cm−3) | 0.16 | 0.15 | 0.16 | <0.01 | 0.10 | −0.03 | 0.23 | 0.14 | |
>10 (cm−3) | Ref. | Ref. | |||||||
Categorical Hour of the Day | 0–07 | Ref. | Ref. | ||||||
07–18 | 0.11 | 0.10 | 0.11 | <0.01 | 0.23 | 0.21 | 0.24 | <0.01 | |
18–24 | 0.08 | 0.07 | 0.08 | <0.01 | 0.17 | 0.16 | 0.18 | <0.01 | |
Categorical Temperature | 2–12 °C | Ref. | Ref. | ||||||
12–18 °C | 0.06 | 0.05 | 0.07 | <0.01 | 0.06 | 0.05 | 0.08 | <0.01 | |
>18 °C | 0.06 | 0.05 | 0.08 | <0.01 | 0.08 | 0.06 | 0.09 | <0.01 | |
Weekend vs. Workdays | 0.02 | 0.01 | 0.02 | <0.01 | 0.02 | 0.01 | 0.03 | <0.01 | |
Categorical Relative Humidity | 0–15% | 0.00 | −0.02 | 0.02 | 0.64 | 0.04 | 0.01 | 0.07 | <0.01 |
15–70% | 0.06 | 0.05 | 0.07 | <0.01 | 0.05 | 0.04 | 0.06 | <0.01 | |
>70% | Ref. | Ref. | |||||||
Categorical Wind Speed | >3.3 m/s vs. 0–3.3 m/s | 0.01 | 0.01 | 0.02 | <0.01 | 0.02 | 0.01 | 0.03 | <0.01 |
Season | spring | 0.10 | 0.09 | 0.10 | <0.01 | 0.08 | 0.07 | 0.09 | <0.01 |
summer | Ref. | Ref. | |||||||
autumn | 0.05 | 0.05 | 0.06 | <0.01 | 0.04 | 0.03 | 0.05 | <0.01 | |
winter | 0.05 | 0.03 | 0.06 | <0.01 | 0.02 | 0.00 | 0.03 | 0.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Yuval; Broday, D.M.; Raz, R. Predictors of the Indoor-to-Outdoor Ratio of Particle Number Concentrations in Israel. Atmosphere 2020, 11, 1074. https://doi.org/10.3390/atmos11101074
Zhang S, Yuval, Broday DM, Raz R. Predictors of the Indoor-to-Outdoor Ratio of Particle Number Concentrations in Israel. Atmosphere. 2020; 11(10):1074. https://doi.org/10.3390/atmos11101074
Chicago/Turabian StyleZhang, Siyu, Yuval, David M. Broday, and Raanan Raz. 2020. "Predictors of the Indoor-to-Outdoor Ratio of Particle Number Concentrations in Israel" Atmosphere 11, no. 10: 1074. https://doi.org/10.3390/atmos11101074
APA StyleZhang, S., Yuval, Broday, D. M., & Raz, R. (2020). Predictors of the Indoor-to-Outdoor Ratio of Particle Number Concentrations in Israel. Atmosphere, 11(10), 1074. https://doi.org/10.3390/atmos11101074