Daily Variability in the Terrestrial UV Airglow
Abstract
:1. Introduction
2. Observations of Earth’s Ultraviolet Airglow
3. Results
3.1. Isolation of 135.6-nm and LBH Emissions
3.2. 135.6-nm and LBH Images
3.3. Airglow Variations in 2019
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
F107 | solar 10.7-cm radio flux |
LBH | Lyman Birge Hopfield |
References
- Eastes, R.W.; McClintock, W.E.; Burns, A.G.; Anderson, D.N.; Andersson, L.; Codrescu, M.; Correira, J.T.; Daniell, R.E.; England, S.L.; Evans, J.S.; et al. The Global-Scale Observations of the Limb and Disk (GOLD) Mission. Space Sci. Rev. 2017. [Google Scholar] [CrossRef]
- Eastes, R.W.; McClintock, W.E.; Burns, A.G.; Anderson, D.N.; Andersson, L.; Aryal, S.; Budzien, S.A.; Cai, X.; Codrescu, M.V.; Correira, J.T.; et al. Initial Observations by the GOLD Mission. J. Geophys. Res. 2020, 125, e2020JA027823. [Google Scholar] [CrossRef]
- Mlynczak, M.; Martin-Torres, F.J.; Russell, J.; Beaumont, K.; Jacobson, S.; Kozyra, J.; Lopez-Puertas, M.; Funke, B.; Mertens, C.; Gordley, L.; et al. The natural thermostat of nitric oxide emission at 5.3 μm in the thermosphere observed during the solar storms of April 2002. Geophys. Res. Lett. 2003, 30, 2100. [Google Scholar] [CrossRef] [Green Version]
- Meier, R.R. Ultraviolet Spectroscopy and Remote Sensing of the Upper Atmosphere. Space Sci. Rev. 1991, 58, 1–185. [Google Scholar] [CrossRef]
- Hanson, W.B. Radiative recombination of atomic oxygen ions in the nighttime F-region. J. Geophys. Res. 1969, 74, 3720–3722. [Google Scholar] [CrossRef]
- Hicks, G.T.; Chubb, T.A. Equatorial aurora/airglow in the far ultraviolet. J. Geophys. Res. 1970, 75, 6233–6248. [Google Scholar] [CrossRef]
- Carruthers, G.R.; Page, T. Apollo 16 far ultraviolet imagery of the polar auroras, tropical airglow belts, and general airglow. J. Geophys. Res. 1976, 81, 483–496. [Google Scholar] [CrossRef]
- Meier, R.R.; Prinz, D.K. Observations of the O I 1304-A airglow from Ogo 4. J. Geophys. Res. 1971, 76, 4608–4620. [Google Scholar] [CrossRef]
- Conway, R.R.; Meier, R.R.; Huffman, R.E. Satellite observations of the OI 1304, 1356 and 1641 Ådayglow and the abundance of atomic oxygen in the thermosphere. Planet. Space Sci. 1988, 36, 963–973. [Google Scholar] [CrossRef]
- Craven, J.D.; Nicholas, A.C.; Frank, L.A.; Strickland, D.J.; Immel, T.J. Variations in FUV dayglow with intense auroral activity. Geophys. Res. Lett. 1994, 21, 2793–2796. [Google Scholar] [CrossRef]
- Immel, T.J.; Craven, J.D.; Nicholas, A.C. The DE-1 auroral imager’s response to the FUV dayglow for thermospheric studies. J. Atmos. Sol.-Terr. Phys. 2000, 62, 47–64. [Google Scholar] [CrossRef]
- Frank, L.A.; Craven, J.D.; Burch, J.L.; Winningham, J.D. Polar views of the Earth’s aurora with Dynamics Explorer. Geophys. Res. Lett. 1982, 9, 1001–1004. [Google Scholar] [CrossRef]
- Craven, J.D.; Frank, L.A. Latitudinal motions of the aurora during substorms. J. Geophys. Res. 1987, 92, 4565–4573. [Google Scholar] [CrossRef]
- Killeen, T.L.; Craven, J.D.; Frank, L.A.; Ponthieu, J.J.; Spencer, N.W.; Heelis, R.A.; Brace, L.H.; Roble, R.G.; Hays, P.B.; Carignan, G.R. On the relationship between dynamics of the polar thermosphere and morphology of the aurora: Global-scale observations from Dynamics Explorer 1 and 2. J. Geophys. Res. 1988, 93, 2675–2692. [Google Scholar] [CrossRef]
- Immel, T.J.; Eastes, R.W. New NASA Missions Focus on Terrestrial Forcing of the Space Environment. Bull. Am. Meteo. Soc. 2019, 100, 2153–2156. [Google Scholar] [CrossRef]
- Krywonos, A.; Murray, D.J.; Eastes, R.W.; Aksnes, A.; Budzien, S.A.; Daniell, R.E. Remote sensing of neutral temperatures in the Earth’s thermosphere using the Lyman-Birge-Hopfield bands of N2: Comparisons with satellite drag data. J. Geophys. Res. 2012, 117, A09311. [Google Scholar] [CrossRef] [Green Version]
- Ajello, J.M.; Shemansky, D.E. A reexamination of important N2 cross sections by electron impact with application to the dayglow: The Lyman-Birge-Hopfield band system and N I(119.99 nm). J. Geophys. Res. 1985, 90, 9845–9861. [Google Scholar] [CrossRef]
- Ajello, J.M.; Malone, C.P.; Holsclaw, G.M.; Hoskins, A.C.; Eastes, R.W.; McClintock, W.E.; Johnson, P.V. Electron impact study of the 100 eV emission cross section and lifetime of the Lyman-Birge-Hopfield band system of N2: Direct excitation and cascade. J. Geophys. Res. 2017, 122, 6776–6790. [Google Scholar] [CrossRef]
- Strickland, D.J.; Evans, J.S.; Paxton, L.J. Satellite remote sensing of thermospheric O/N2 and solar EUV. 1: Theory. J. Geophys. Res. 1995, 100, 12217–12226. [Google Scholar] [CrossRef]
- Evans, J.S.; Strickland, D.J.; Huffman, R.E. Satellite remote sensing of thermospheric O/N2 and solar EUV. 2: Data analysis. J. Geophys. Res. 1995, 100, 12227–12233. [Google Scholar] [CrossRef]
- Zhang, Y.; Paxton, L.J.; Morrison, D.; Wolven, B.; Kil, H.; Meng, C.I.; Mende, S.B.; Immel, T.J. O/N2 changes during 1–4 October 2002 storms: IMAGE SI-13 and TIMED/GUVI observations. J. Geophys. Res. 2004, 109, 10308. [Google Scholar] [CrossRef]
- Meier, R.R.; Crowley, G.; Strickland, D.J.; Christensen, A.B.; Paxton, L.J.; Morrison, D.; Hackert, C.L. First look at the 20 November 2003 superstorm with TIMED/GUVI: Comparisons with a thermospheric global circulation model. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Zhang, Y.; Paxton, L.J. Long-term variation in the thermosphere: TIMED/GUVI observations. J. Geophys. Res. 2011, 116, A00H02. [Google Scholar] [CrossRef]
- Zhang, Y.; Paxton, L.J. Reply to comment by D.J. Strickland et al. on “Long-term variation in the thermosphere: TIMED/GUVI observations”. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Strickland, D.J.; Evans, J.S.; Correira, J. Comment on “Long-term variation in the thermosphere: TIMED/GUVI observations” by Y. Zhang and L. J. Paxton. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- McClintock, W.E.; Eastes, R.W.; Hoskins, A.C.; Siegmund, O.H.W.; McPhate, J.B.; Krywonos, A.; Solomon, S.C.; Burns, A.G. Global-Scale Observations of the Limb and Disk Mission Implementation: 1. Instrument Design and Early Flight Performance. J. Geophys. Res. 2020, 125, e2020JA027797. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Paresce, F.; Bowyer, S.; Kimble, R.; Kumar, S. The extreme ultraviolet day airglow. J. Geophys. Res. 1983, 88, 4898–4904. [Google Scholar] [CrossRef]
- Correira, J.; Evans, J.S.; Viebell, V.; Eastes, R. GOLD Level 2 Data Products: O/N2 and QEUV Algorithms. J. Geophys. Res. 2020. submitted. [Google Scholar]
- Gan, Q.; Eastes, R.W.; Burns, A.G.; Wang, W.; Qian, L.; Solomon, S.C.; Codrescu, M.V.; McInerney, J.; McClintock, W.E. First Synoptic Observations of Geomagnetic Storm Effects on the Global-Scale OI 135.6-nm Dayglow in the Thermosphere by the GOLD Mission. Geophys. Res. Lett. 2020, 47, e2019GL085400. [Google Scholar] [CrossRef] [Green Version]
- Eastes, R.W.; Solomon, S.C.; Daniell, R.E.; Anderson, D.N.; Burns, A.G.; England, S.L.; Martinis, C.R.; McClintock, W.E. Global-Scale Observations of the Equatorial Ionization Anomaly. Geophys. Res. Lett. 2019, 46, 9318–9326. [Google Scholar] [CrossRef] [Green Version]
- Kamalabadi, F.; Qin, J.; Harding, B.J.; Iliou, D.; Makela, J.J.; Meier, R.R.; England, S.L.; Frey, H.U.; Mende, S.B.; Immel, T.J. Inferring Nighttime Ionospheric Parameters with the Far Ultraviolet Imager Onboard the Ionospheric Connection Explorer. Space Sci. Rev. 2018, 214, 70. [Google Scholar] [CrossRef]
- Immel, T.J.; England, S.L.; Mende, S.B.; Heelis, R.A.; Englert, C.R.; Edelstein, J.; Frey, H.U.; Korpela, E.J.; Taylor, E.R.; Craig, W.W.; et al. The Ionospheric Connection Explorer Mission: Mission Goals and Design. Space Sci. Rev. 2018, 214, 13. [Google Scholar] [CrossRef]
- Stephan, A.W.; Meier, R.R.; England, S.L.; Mende, S.B.; Frey, H.U.; Immel, T.J. Daytime O/N2 Retrieval Algorithm for the Ionospheric Connection Explorer (ICON). Space Sci. Rev. 2018, 214, 42. [Google Scholar] [CrossRef]
- Rostoker, G. Geomagnetic indices. Rev. Geophys. 1972, 10, 935–950. [Google Scholar] [CrossRef]
- Tapping, K.F. The 10.7-cm solar radio flux (F10.7). Space Weather 2013, 11, 394–406. [Google Scholar] [CrossRef]
- Prölss, G.W.; Roemer, M. Thermospheric Storms. Adv. Space Res. 1987, 7, 223–235. [Google Scholar] [CrossRef]
- Burns, A.G.; Killeen, T.L.; Carignan, G.R.; Roble, R.G. Large enhancements of the O/N2 ratio in the evening sector of the winter hemisphere during geomagnetic storms. J. Geophys. Res. 1995, 100, 14673–14691. [Google Scholar] [CrossRef]
- Immel, T.J.; Crowley, G.; Craven, J.D.; Roble, R.G. Dayside enhancements of thermospheric O/N2 following magnetic storm onset. J. Geophys. Res. 2001, 106, 15471–15488. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Codrescu, M.V.; Moffett, R.J.; Quegan, S. Response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. 1994, 99, 3893–3914. [Google Scholar] [CrossRef]
- Rishbeth, H.; Heelis, R.; Müller-Wodarg, I. Variations of thermospheric composition according to AE-C data and CTIP modelling. Ann. Geophys. 2004, 22, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Mende, S.B.; Frey, H.U.; Rider, K.; Chou, C.; Harris, S.E.; Siegmund, O.H.W.; England, S.L.; Wilkins, C.; Craig, W.; Immel, T.J.; et al. The Far Ultra-Violet Imager on the Icon Mission. Space Sci. Rev. 2017, 212, 655–696. [Google Scholar] [CrossRef] [Green Version]
- Gardner, L.C.; Schunk, R.W. Large-scale gravity wave characteristics simulated with a high-resolution global thermosphere-ionosphere model. J. Geophys. Res. 2011, 116, A06303. [Google Scholar] [CrossRef]
- Nishioka, M.; Tsugawa, T.; Kubota, M.; Ishii, M. Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado. Geophys. Res. Lett. 2013, 40, 5581–5586. [Google Scholar] [CrossRef]
- England, S.L.; Greer, K.R.; Solomon, S.C.; Eastes, R.W.; McClintock, W.E.; Burns, A.G. Observation of Thermospheric Gravity Waves in the Southern Hemisphere With GOLD. J. Geophys. Res. 2020, 125, e27405. [Google Scholar] [CrossRef]
- Hagan, M.E.; Forbes, J.M. Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Liu, H.L.; Yudin, V.A.; Roble, R.G. Day-to-day ionospheric variability due to lower atmosphere perturbations. Geophys. Res. Lett. 2013, 40, 665–670. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Oberheide, J.; Sutton, E.K.; Liu, H.L.; Anderson, J.L.; Raeder, K. Short-term nonmigrating tide variability in the mesosphere, thermosphere, and ionosphere. J. Geophys. Res. 2016, 121, 3621–3633. [Google Scholar] [CrossRef] [Green Version]
- Mlynczak, M.G.; Solomon, S. A detailed evaluation of the heating efficiency in the middle atmosphere. J. Geophys. Res. 1993, 98, 10517–10541. [Google Scholar] [CrossRef]
- Mlynczak, M.G.; Hunt, L.A.; Mast, J.C.; Thomas Marshall, B.; Russell, J.M., III; Smith, A.K.; Siskind, D.E.; Yee, J.H.; Mertens, C.J.; Javier Martin-Torres, F.; et al. Atomic oxygen in the mesosphere and lower thermosphere derived from SABER: Algorithm theoretical basis and measurement uncertainty. J. Geophys. Res. 2013, 118, 5724–5735. [Google Scholar] [CrossRef]
AM | PM | |
---|---|---|
135.6 Peak Altitude | 153 km | 153 km |
LBH Peak Altitude | 146 km | 147 km |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Immel, T.J.; Eastes, R.W.; McClintock, W.E.; Mende, S.B.; Frey, H.U.; Triplett, C.; England, S.L. Daily Variability in the Terrestrial UV Airglow. Atmosphere 2020, 11, 1046. https://doi.org/10.3390/atmos11101046
Immel TJ, Eastes RW, McClintock WE, Mende SB, Frey HU, Triplett C, England SL. Daily Variability in the Terrestrial UV Airglow. Atmosphere. 2020; 11(10):1046. https://doi.org/10.3390/atmos11101046
Chicago/Turabian StyleImmel, Thomas J., Richard W. Eastes, William E. McClintock, Steven B. Mende, Harald U. Frey, Colin Triplett, and Scott L. England. 2020. "Daily Variability in the Terrestrial UV Airglow" Atmosphere 11, no. 10: 1046. https://doi.org/10.3390/atmos11101046