Regional Differences of Primary Meteorological Factors Impacting O3 Variability in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Domain
2.2. Surface Measurements and Validation Data
2.3. Long-Term Trend Analysis
2.4. Anomaly Analysis
3. Results and Discussion
3.1. Surface Ozone (O3) Variability in Korea from 2001 to 2017
3.2. Contributions of Emissions and Meteorological Factors to Inter-Annual O3 Variability
3.3. Impact of Varying Meteorological Conditions on Annual O3 Changes in Korea
3.3.1. Annual Changes in the Meteorological Conditions Affecting O3
3.3.2. Causes of the Increase in the O3–Meteorology Relationship after 2010
3.3.3. Regional Differences on the Impact of Meteorological Conditions on O3 Variability
3.3.4. Major Drivers for the Strengthened Impact of Meteorological Conditions on O3 after 2010
4. Summary and Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Booker, F.; Muntifering, R.; Mcgrath, M.; Burkey, K.; Decoteau, D.; Fiscus, E.; Manning, W.; Krupa, S.; Chappelka, A.; Grantz, D. The ozone component of global change: Potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J. Integr. Plant Biol. 2009, 51, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Naik, V.; Horowitz, L.W.; Mauzerall, D.L. Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present. Atmos. Chem. Phys. 2013, 13, 1377–1394. [Google Scholar] [CrossRef] [Green Version]
- Velasco, E.; Retama, A. Ozone’s threat hits back Mexico city. Sustain. Cities Soc. 2017, 31, 260–263. [Google Scholar] [CrossRef]
- Lee, H.; Kim, E.K.; Kim, H.Y.; Kim, T.I. Effects of exposure to ozone on the ocular surface in an experimental model of allergic conjunctivitis. PLoS ONE 2017, 12, e0169209. [Google Scholar]
- Coleman, M.D.; Isebrands, J.G.; Dickson, R.E.; Karnosky, D.F. Photosynthetic productivity of aspen clones varying in sensitivity to tropospheric ozone. Tree Physiol. 1995, 15, 585–592. [Google Scholar] [CrossRef]
- Ryerson, T.B.; Trainer, M.; Holloway, J.S.; Parrish, D.D.; Huey, L.G.; Sueper, D.T.; Frost, G.J.; Donnelly, S.G.; Schauffler, S.; Atlas, E.L.; et al. Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science 2001, 292, 719–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paniagua, I.H.Y.; Clemitshaw, K.C.; Mendoza, A. Observed trends in ground-level O3 in Monterrey, Mexico, during 1993-2014: Comparison with Mexico City and Guadalajara. Atmos. Chem. Phys. 2017, 17, 9163–9185. [Google Scholar] [CrossRef] [Green Version]
- Cohan, D.S.; Hakami, A.; Hu, Y.; Russell, A.G. Nonlinear response of ozone to emissions: Source apportionment and sensitivity analysis. Environ. Sci. Technol. 2005, 39, 6739–6748. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Cohan, D.S.; Byun, D.W.; Ngan, F. Highly nonlinear ozone formation in the Houston region and implications for emission controls. J. Geophys. Res. Atmos. 2010, 115, D23. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Tonnesen, G.S.; Wang, Z. One-hour and eight-hour average ozone in the California South Coast air quality management district: Trends in peak values and sensitivity to precursors. Atmos. Environ. 2004, 38, 2197–2207. [Google Scholar] [CrossRef]
- Zou, Y.; Deng, X.J.; Zhu, D.; Gong, D.C.; Wang, H.; Li, F.; Tan, H.B.; Deng, T.; Mai, B.R.; Liu, X.T.; et al. Characteristics of 1 year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China. Atmos. Chem. Phys. 2015, 15, 6625–6636. [Google Scholar] [CrossRef] [Green Version]
- Walcek, C.J.; Yuan, H.-H. Calculated Influence of Temperature-Related Factors on Ozone Formation Rates in the Lower Troposphere. J. Appl. Meteorol. 2002, 34, 1056–1069. [Google Scholar] [CrossRef] [Green Version]
- Wise, E.K.; Comrie, A.C. Extending the kolmogorov–zurbenko filter: Application to ozone, particulate matter, and meteorological trends. J. Air Waste Manag. Assoc. 2005, 55, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Wise, E.K.; Comrie, A.C. Meteorologically adjusted urban air quality trends in the Southwestern United States. Atmos. Environ. 2005, 39, 2969–2980. [Google Scholar] [CrossRef]
- Bloomer, B.J.; Stehr, J.W.; Piety, C.A.; Salawitch, R.J.; Dickerson, R.R. Observed relationships of ozone air pollution with temperature and emissions. Geophys. Res. Lett. 2009, 36, L09803. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.P.; Lee, G. Trend of air quality in Seoul: Policy and science. Aerosol Air Qual. Res. 2018, 18, 2141–2156. [Google Scholar] [CrossRef] [Green Version]
- An, H.; Han, J.; Lee, M.; Kang, E. The Long-term Variations of Ozone and Nitrogen Oxides in Suwon City during 1991~2012. J. Korean Soc. Atmos. Environ. 2015, 31, 378–384. [Google Scholar] [CrossRef]
- Akimoto, H.; Mori, Y.; Sasaki, K.; Nakanishi, H.; Ohizumi, T.; Itano, Y. Analysis of monitoring data of ground-level ozone in Japan for long-term trend during 1990–2010: Causes of temporal and spatial variation. Atmos. Environ. 2015, 102, 302–310. [Google Scholar] [CrossRef]
- U.S. EPA. Air Quality Criteria For Ozone And Related Photochemical Oxidants (Final Report); United States Environmental Protection Agency: Washington, DC, USA, 2006.
- Yoo, J.-M.; Jeong, M.-J.; Kim, D.; Stockwell, W.R.; Yang, J.-H.; Shin, H.-W.; Lee, M.-I.; Song, C.-K.; Lee, S.-D. Spatiotemporal variations of air pollutants (O3, NO2, SO2, CO, PM10, and VOCs) with land-use types. Atmos. Chem. Phys. 2015, 15, 10857–10885. [Google Scholar] [CrossRef] [Green Version]
- Camalier, L.; Cox, W.; Dolwick, P. The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmos. Environ. 2007, 41, 7127–7137. [Google Scholar] [CrossRef]
- Bais, A.F.; McKenzie, R.L.; Bernhard, G.; Aucamp, P.J.; Ilyas, M.; Madronich, S.; Tourpali, K. Ozone depletion and climate change: Impacts on UV radiation. Photochem. Photobiol. Sci. 2015, 14, 19–52. [Google Scholar] [CrossRef] [PubMed]
- Otero, N.; Sillmann, J.; Schnell, J.L.; Rust, H.W.; Butler, T. Synoptic and meteorological drivers of extreme ozone concentrations over Europe. Environ. Res. Lett. 2016, 11, 024005. [Google Scholar] [CrossRef]
- Zheng, J.; Swall, J.L.; Cox, W.M.; Davis, J.M. Interannual variation in meteorologically adjusted ozone levels in the eastern United States: A comparison of two approaches. Atmos. Environ. 2007, 41, 705–716. [Google Scholar] [CrossRef]
- Kim, H.C.; Kim, S.; Kim, B.U.; Jin, C.S.; Hong, S.; Park, R.; Son, S.W.; Bae, C.; Bae, M.A.; Song, C.K.; et al. Recent increase of surface particulate matter concentrations in the Seoul Metropolitan Area, Korea. Sci. Rep. 2017, 7, 4710. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Ghim, Y.S.; Han, J.-S.; Park, S.-M.; Shin, H.-J.; Lee, S.-B.; Kim, J.; Lee, G. Long-term Trend Analysis of Korean Air Quality and Its Implication to Current Air Quality Policy on Ozone and PM10. J. Korean Soc. Atmos. Environ. 2018, 34, 1–15. [Google Scholar] [CrossRef]
- Hong, K.-O.; Suh, M.-S.; Rha, D.-K. Temporal and Spatial Variations of Precipitation in South Korea for Recent 30 Years (1976-2005) and Geographic Environments. J. Korean Earth Sci. Soc. 2006, 27, 433–449. [Google Scholar]
- Park, J.S.; Kang, H.S.; Lee, Y.S.; Kim, M.K. Changes in the extreme daily rainfall in South Korea. Int. J. Climatol. 2011, 31, 2290–2299. [Google Scholar] [CrossRef]
- National Institute of Environmental Research. Air Quality Monitoring Station; AQMS. Available online: http://www.airkorea.or.kr/web/last_amb_hour_data?pMENU_NO=123 (accessed on 1 June 2019).
- Martins, D.K.; Stauffer, R.M.; Thompson, A.M.; Knepp, T.N.; Pippin, M. Surface ozone at a coastal suburban site in 2009 and 2010: Relationships to chemical and meteorological processes. J. Geophys. Res. Atmos. 2012, 117, 5306. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Environmental Research. Clean Air Policy Support System; CAPSS. Available online: http://airemiss.nier.go.kr/module/statistics/materialStatistics.do?siteId=airemiss&id=airemiss_030200000000 (accessed on 1 June 2019).
- Zurbenko, I.G. Detecting and tracking changes in ozone air quality. Air Waste 1994, 44, 1089–1092. [Google Scholar]
- Rao, S.T.; Zurbenko, I.G.; Neagu, R.; Porter, P.S.; Ku, J.Y.; Henry, R.F. Space and Time Scales in Ambient Ozone Data. Bull. Am. Meteorol. Soc. 1997, 78, 2153–2166. [Google Scholar] [CrossRef]
- Vukovich, F.M. Time scales of surface ozone variations in the regional, non-urban environment. Atmos. Environ. 1997, 31, 1513–1530. [Google Scholar] [CrossRef]
- Hogrefe, C.; Rao, S.T.; Zurbenko, I.G.; Porter, P.S. Interpreting the information in ozone observations and model predictions relevant to regulatory policies in the Eastern United States. Bull. Am. Meteorol. Soc. 2000, 81, 2083–2106. [Google Scholar] [CrossRef] [Green Version]
- Shon, Z.H.; Kim, K.H. Impact of emission control strategy on NO2 in urban areas of Korea. Atmos. Environ. 2011, 45, 808–812. [Google Scholar] [CrossRef]
- Jacobson, Z. Atmospheric Pollution: History, Science, & Regulation; Cambridge University Press: Cambridge, UK, 2005; ISBN 9780511802287. [Google Scholar]
- Haigh, J.D. The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature 1994, 370, 544–546. [Google Scholar] [CrossRef]
- Kang, D.; Hogrefe, C.; Foley, K.L.; Napelenok, S.L.; Mathur, R.; Trivikrama Rao, S. Application of the kolmogorov-Zurbenko filter and the decoupled direct 3D method for the dynamic evaluation of a regional air quality model. Atmos. Environ. 2013, 80, 58–69. [Google Scholar] [CrossRef]
- Forster, P.M.; Shine, K.P. Radiative forcing and temperature trends from stratospheric ozone changes. J. Geophys. Res. Atmos. 1997, 102, 10841–10855. [Google Scholar] [CrossRef]
- Lee, Y.C.; Shindell, D.T.; Faluvegi, G.; Wenig, M.; Lam, Y.F.; Ning, Z.; Hao, S.; Lai, C.S. Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China. Tellus B Chem. Phys. Meteorol. 2014, 66, 23455. [Google Scholar] [CrossRef]
- Pusede, S.E.; Steiner, A.L.; Cohen, R.C. Temperature and Recent Trends in the Chemistry of Continental Surface Ozone. Chem. Rev. 2015, 115, 3898–3918. [Google Scholar] [CrossRef]
- Wie, J.; Moon, B.K. Impact of the Western North Pacific Subtropical High on summer surface ozone in the Korean Peninsula. Atmos. Pollut. Res. 2018, 9, 655–661. [Google Scholar] [CrossRef]
- Arundel, V.A.; Sterling, M.E.; Biggin, H.J.; Sterling, D.T. Indirect Health Effects of Relative Humidity in Indoor Environments. Environ. Health Perspect. 1986, 65, 351–361. [Google Scholar]
- Yoo, J.M.; Lee, Y.R.; Kim, D.; Jeong, M.J.; Stockwell, W.R.; Kundu, P.K.; Oh, S.M.; Shin, D.B.; Lee, S.J. New indices for wet scavenging of air pollutants (O3, CO, NO2, SO2, and PM10) by summertime rain. Atmos. Environ. 2014, 82, 226–237. [Google Scholar] [CrossRef]
- Jia, L.; Xu, Y. Effects of relative humidity on ozone and secondary organic aerosol formation from the photooxidation of benzene and ethylbenzene. Aerosol Sci. Technol. 2014, 48, 1–12. [Google Scholar] [CrossRef]
- Ghim, Y.S.; Oh, H.S.; Chang, Y.S. Meteorological effects on the evolution of high ozone episodes in the greater Seoul area. J. Air Waste Manag. Assoc. 2001, 51, 185–202. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Yim, S.; Kwon, M.; Kim, D. Decadal Change in Rainfall During the Changma Period in Early-2000s. Atmosphere 2017, 27, 345–358. [Google Scholar]
- Zhang, Z.; Ma, Z.; Kim, S.J. Significant decrease of PM2.5 in Beijing based on long-term records and kolmogorov–Zurbenko filter approach. Aerosol Air Qual. Res. 2018, 18, 711–718. [Google Scholar] [CrossRef] [Green Version]
- Ghim, Y.S.; Chang, Y.S. Characteristics of ground-level ozone distributions in Korea fon the period of 1990–1995. J. Geophys. Res. Atmos. 2000, 105, 8877–8890. [Google Scholar] [CrossRef]
- Choi, W.; Kim, K.Y. Summertime variability of the western North Pacific subtropical high and its synoptic influences on the East Asian weather. Sci. Rep. 2019, 9, 7865. [Google Scholar] [CrossRef]
- Jeon, W.B.; Lee, S.H.; Lee, H.; Park, C.; Kim, D.H.; Park, S.Y. A study on high ozone formation mechanism associated with change of NOx/VOCs ratio at a rural area in the Korean Peninsula. Atmos. Environ. 2014, 89, 10–21. [Google Scholar] [CrossRef]
- U.S. EPA. National Air Pollutant Emission Trends; United States Environmental Protection Agency: Washington, DC, USA, 1996.
- Gaudel, A.; Cooper, O.R.; Ancellet, G.; Barret, B.; Boynard, A.; Burrows, J.P.; Clerbaux, C.; Coheur, P.F.; Cuesta, J.; Cuevas, E.; et al. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elementa 2018, 6, 1–58. [Google Scholar] [CrossRef]
- Zanis, P.; Hadjinicolaou, P.; Pozzer, A.; Tyrlis, E.; Dafka, S.; Mihalopoulos, N.; Lelieveld, J. Summertime free-tropospheric ozone pool over the eastern Mediterranean/middle east. Atmos. Chem. Phys. 2014, 14, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Kalabokas, P.; Hjorth, J.; Foret, G.; Dufou, G.; Eremenko, M.; Siour, G.; Cuesta, J.; Beekmann, M. An investigation on the origin of regional springtime ozone episodes in the western Mediterranean. Atmos. Chem. Phys. 2017, 17, 3905–3928. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Kim, S.; Son, S. Evaluation of the Troposphere Ozone in the Reanalysis Datasets: Comparison with Pohang Ozonesonde Observation. Atmosphere 2019, 29, 53–59. [Google Scholar]
- Oltmans, S.J.; Lefohn, A.S.; Harris, J.M.; Galbally, I.; Scheel, H.E.; Bodeker, G.; Brunke, E.; Claude, H.; Tarasick, D.; Johnson, B.J.; et al. Long-term changes in tropospheric ozone. Atmos. Environ. 2006, 40, 3156–3173. [Google Scholar] [CrossRef]
R | R2 | Trend | |||||
---|---|---|---|---|---|---|---|
2001–2015 | 2010–2015 | 2001–2015 | 2010–2015 | 2001–2015 | 2010–2015 | Units | |
O3 | 0.68 | 1.26 | (ppb year−1) | ||||
NOx | −0.64 | 0.90 | 0.41 | 0.82 | −17.99 | 22.42 | (kton year−1) |
VOC | 0.89 | 0.74 | 0.80 | 0.54 | 16.50 | 23.50 | (kton year−1) |
Variables | 2001–2017 | 2001–2009 | 2010–2017 | Units |
---|---|---|---|---|
O3 | 0.76 | 0.70 | 1.13 | (ppb year−1) |
TMAX | 3.81 | 3.08 | 24.91 | (10−2 °C year−1) |
SR | 2.31 | −6.87 | 11.41 | (10−2 h year−1) |
PRCP | −7.43 | −8.26 | −35.89 | (10−2 mm year−1) |
WS | −1.17 | −0.36 | −4.33 | (10−2 ms−1 year−1) |
RH | 7.85 | 4.06 | 44.38 | (10−2% year−1) |
PRD1 | PRD2 | Difference | Rate of Change | |
---|---|---|---|---|
TMAX | 0.17 | 0.75 | 0.58 | (+77%) |
SR | 0.17 | 0.79 | 0.62 | (+78%) |
RH | 0.00 | 0.02 | 0.02 | - |
PRCP | 0.22 | 0.67 | 0.45 | (+67%) |
WS | 0.03 | 0.77 | 0.74 | (+96%) |
TMAX | SR | RH | PRCP | WS | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PRD1 | PRD2 | PRD1 | PRD2 | PRD1 | PRD2 | PRD1 | PRD2 | PRD1 | PRD2 | |
SMA | 0.24 | 0.88 * | −0.22 | 0.95 * | 0.35 | −0.59 * | 0.13 | −0.90 * | 0.60 * | −0.08 |
CN | 0.02 | 0.78 * | 0.01 | 0.91 * | −0.20 | 0.20 | −0.43 | −0.76 * | −0.01 | −0.89 * |
HN | 0.56* | 0.89 * | −0.36 | 0.85 * | −0.09 | 0.47 | −0.36 | −0.77 * | −0.58 * | −0.92 * |
YN | 0.59* | 0.80 * | −0.44 | 0.90 * | 0.12 | −0.13 | −0.46 | −0.65 * | 0.34 | −0.70 * |
GW | 0.18 | 0.83 * | −0.36 | 0.61 * | 0.07 | −0.34 | −0.09 | −0.62 * | −0.16 | −0.66 * |
JJ | −0.03 | −0.03 | −0.45 | 0.06 | −0.47 | −0.51 * | 0.13 | −0.10 | −0.62 * | −0.04 |
National | 0.41 | 0.87 * | −0.41 | 0.89 * | 0.06 | 0.14 | −0.47 | −0.82 * | −0.18 | −0.88 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, Y.; Lee, H.W.; Jeon, W. Regional Differences of Primary Meteorological Factors Impacting O3 Variability in South Korea. Atmosphere 2020, 11, 74. https://doi.org/10.3390/atmos11010074
Jeong Y, Lee HW, Jeon W. Regional Differences of Primary Meteorological Factors Impacting O3 Variability in South Korea. Atmosphere. 2020; 11(1):74. https://doi.org/10.3390/atmos11010074
Chicago/Turabian StyleJeong, Yeomin, Hwa Woon Lee, and Wonbae Jeon. 2020. "Regional Differences of Primary Meteorological Factors Impacting O3 Variability in South Korea" Atmosphere 11, no. 1: 74. https://doi.org/10.3390/atmos11010074
APA StyleJeong, Y., Lee, H. W., & Jeon, W. (2020). Regional Differences of Primary Meteorological Factors Impacting O3 Variability in South Korea. Atmosphere, 11(1), 74. https://doi.org/10.3390/atmos11010074