Supplementary Materials:

Regional Differences of Primary Meteorological Factors Impacting O₃ Variability in South Korea

Yeomin Jeong¹, Hwa Woon Lee², and Wonbae Jeon^{2,*}

- ¹ APEC Climate Center, Busan 46241, Korea; yeominjeong@apcc21.org
- ² Department of Atmospheric Sciences, Pusan National University, Busan 46241, Korea; hwlee@pusan.ac.kr

* Correspondence: wbjeon@pusan.ac.kr; Tel.: +82-51-510-2174

Table S1. The multiple linear regression analysis results using O₃ as a dependent variable and meteorological factors as an independent variable in in PRD1 (Backward elimination regression method was used).

Dependent	Predictors	Std.	Beta	t	Sig.	Tolerance	VIF
Variable		Error	(Standardization				
			Coefficients)				
Ozone	(Const.)	62.904		3.734	.010		
	RH	.724	-1.648	-3.047	.023*	.186	5.366
	SR	.007	-1.895	-3.503	.013*	.186	5.366
		R	$= .820, R^2 = .673,$	Adjust	ed R ² = .56	54,	
		F= 6	5.170, p= .035,	Durbin-V	Vatson= 1	.690	
			*p<.05, **p<.01	1			

Table S2. The multiple linear regression analysis results using O₃ as a dependent variable and meteorological factors as an independent variable in PRD2 (Backward elimination regression method was used).

Dependent	Predictors	Std.	Beta	t	Sig.	Tolerance	VIF
Variable		Error	(Standardization				
			Coefficients)				
Ozone	(Const.)	6.489		7.824	.001		
	SR	.001	.565	7.166	.001**	.646	1.548
	WS	2.125	544	-6.904	.001**	.646	1.548
			R=.990, R ² =.980,	Adjuste	d R ² = .972,		
		F=	122.169, p= .000,	Durbin-W	Watson= 2.	862	
							*p<.05,

Table S3. The mean and standard deviation of WNPSH during PRD1 and PRD2 (calculated using the850-hPa geopotential height anomalies of ERA-Interim reanalysis data).

	Mean	Standard deviation
PRD1	89.80	332.69
PRD2	220.47	340.99

Standard Normal Homogeneity Test

Figure S1. The result of Standard Normal Homogeneity Test