Evaluation of Different WRF Parametrizations over the Region of Iași with Remote Sensing Techniques
Abstract
1. Introduction
2. WRF Model Setup and Target Area
3. Instrumentation
4. Methods
5. Results
6. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Rao, K.S. Uncertainty analysis in atmospheric dispersion modeling. Pure Appl. Geophys. 2005, 162, 1893–1917. [Google Scholar] [CrossRef]
- Selvam, A.M. Nonlinear dynamics and chaos: Applications in atmospheric sciences. J. Adv. Math. Appl. 2012, 1, 181–205. [Google Scholar] [CrossRef]
- Timofte, A.; Belegante, L.; Cazacu, M.M.; Albina, B.; Talianu, C.; Gurlui, S. Study of planetary boundary layer height from LIDAR measurements and ALARO model. J. Optoelectron. Adv. Mater. 2015, 17, 911–917. [Google Scholar]
- Banks, R.F.; Tiana-Alsina, J.; Baldasano, J.M.; Rocadenbosch, F.; Papayannis, A.; Solomos, S.; Tzanis, C.G. Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign. Atmos. Res. 2016, 176, 185–201. [Google Scholar] [CrossRef]
- Belegante, L.; Nicolae, D.; Nemuc, A.; Talianu, C.; Derognat, C. Retrieval of the boundary layer height from active and passive remote sensors. Comparison with a NWP model. Acta Geophys. 2014, 62, 276–289. [Google Scholar] [CrossRef]
- García-Díez, M.; Fernández, J.; Fita, L.; Yagüe, C. Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Q. J. R. Meteorol. Soc. 2013, 139, 501–514. [Google Scholar] [CrossRef]
- Banks, R.F.; Tiana-Alsina, J.; Rocadenbosch, F.; Baldasano, J.M. Performance evaluation of the boundary-layer height from lidar and the Weather Research and Forecasting model at an urban coastal site in the north-east Iberian Peninsula. Bound. Layer Meteorol. 2015, 157, 265–292. [Google Scholar] [CrossRef]
- Boadh, R.; Satyanarayana, A.N.V.R.; Krishna, T.V.B.P.S.; Madala, S. Sensitivity of PBL schemes of the WRF-ARW model in simulating the boundary layer flow parameters for their application to air pollution dispersion modelling over a tropical station. Atmosfera 2016, 29, 61–81. [Google Scholar] [CrossRef]
- Milovac, J.; Warrach-Sagi, K.; Behrendt, A.; Späth, F.; Ingwersen, J.; Wulfmeyer, V. Inversigation of PBL schemes combining the WRF model simulations with scanning water vapor differential abseorption lidar measurements. J. Geophys. Res. Atmos. 2015, 121, 624–649. [Google Scholar] [CrossRef]
- Sathyanadh, A.; Prabha, T.V.; Balaji, B.; Resmi, E.A.; Karipot, A. Evaluation of WRF PBL parametrization schemes against direct observations during a dry event over the Ganges valley. Atmos. Res. 2017, 193, 125–141. [Google Scholar] [CrossRef]
- Pérez, C.; Jiménez, P.; Jorba, O.; Sicard, M.; Baldasano, J.M. Influence of the PBL scheme on high-resolution photochemical simulations in an urban coastal area over the Western Mediterranean. Atmos. Environ. 2006, 40, 5274–5297. [Google Scholar] [CrossRef]
- Bossioli, E.; Tombrou, M.; Dandou, A.; Athanasopoulou, E.; Varotsos, K.V. The role of planetary boundary-layer parameterizations in the air quality of an urban area with complex topography. Bound. Layer Meteorol. 2009, 131, 53–72. [Google Scholar] [CrossRef]
- Dudhia, J. A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Weather Rev. 1993, 121, 1493–1513. [Google Scholar] [CrossRef]
- Lupașcu, A.; Iriza, A.; Dumitrache, R.C. Using a high resolution topographic data set and analysis of the impact on the forecast of meteorological parameters. Rom. Rep. Phys. 2015, 67, 653–664. [Google Scholar]
- Iriza, A.; Dumitrache, R.C.; Ştefan, S. Numerical modelling of the Bucharest urban heat island with the WRF-urban system. Rom. J. Phys. 2017, 62, 1–14. [Google Scholar]
- Isvoranu, D.; Badescu, V. Comparison Between Measurements and WRF Numerical Simulation of Global Solar Irradiation in Romania. Ann. West. Univ. Timis. Phys. 2013, 57, 24–33. [Google Scholar] [CrossRef][Green Version]
- Dimitrova, R.; Danchovski, V.; Egova, E.; Vladimirov, E.; Sharma, A.; Gueorguiev, O.; Ivanov, D. Modeling the Impact of Urbanization on Local Meteorological Conditions in Sofia. Atmosphere 2019, 10, 366. [Google Scholar] [CrossRef]
- Run, R.; Case, R.D.T. User’s Guide for the NMM Core of the Weather Research and Forecast (WRF) Modeling System Version 3. Available online: https://dtcenter.org/wrf-nmm/users/docs/user_guide/V3/contents_nmm.pdf (accessed on 15 June 2019).
- Morille, Y.; Haeffelin, M.; Drobinski, P.; Pelon, J. STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data. J. Atmos. Ocean. Technol. 2007, 24, 761–775. [Google Scholar] [CrossRef]
- Hennemuth, B.; Lammert, A. Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter. Bound. Layer Meteorol. 2006, 120, 181–200. [Google Scholar] [CrossRef]
- Weather Research and Forecasting Model. Available online: https://www.mmm.ucar.edu/weather-research-and-forecasting-model (accessed on 10 May 2019).
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Grell, G.A. The weather research and forecasting model: Overview, system efforts, and future directions. Bull. Am. Meteorol. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2; No. NCAR/TN-468+ STR; National Center for Atmospheric Research: Boulder, Co, USA; Mesoscale and Microscale Meteorology Div.: Boulder, CO, USA, 2015. [Google Scholar]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Montávez, J.P.; García-Bustamante, E.; Navarro, J.; Muñoz-Roldán, A. An evaluation of WRF's ability to reproduce the surface wind over complex terrain based on typical circulation patterns. J. Geophys. Res. Atmos. 2013, 118, 7651–7669. [Google Scholar] [CrossRef]
- Geiger, R. Klassifikation Der Klimate Nach W. Köppen (Classification of Climates after W. Köppen); Landolt-Börnstein—Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, alte Serie; Springer: Berlin, Germany, 1954; Volume 3, pp. 603–607. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen−Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Pisciculture Tiganasi. Available online: https://www.producator-agricol.ro/piscicultura/tiganasi (accessed on 1 July 2019).
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1988; p. 666. [Google Scholar]
- Foken, T. Micrometeorolgy; Springer-Verlag: Berlin, Germany, 2016. [Google Scholar] [CrossRef]
- World Population Review. Available online: http://worldpopulationreview.com/countries/romania-population/cities/ (accessed on 1 July 2019).
- Aspen Economic Opportunities & Financing the Economy Program 2018. Available online: http://aspeninstitute.ro/white-paper-aspen-economic-opportunities-financing-the-economy-program-2018/ (accessed on 1 July 2019).
- AirVisual Database. Available online: https://www.airvisual.com/world-most-polluted-cities (accessed on 15 May 2019).
- Hong, S.Y.; Lim, J.O.J. The WRF single-moment 6-class microphysics scheme. Asia-Pac. J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Janić, Z.I. Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. Natl. Ocean. Atmos. Adm. 2001, 437, 1–61. [Google Scholar]
- Pleim, J.E. A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteorol. Climatol. 2007, 46, 1383–1395. [Google Scholar] [CrossRef]
- Bougeault, P.; Lacarrere, P. Parameterization of orography-induced turbulence in a mesobeta--scale model. Mon. Weather Rev. 1989, 117, 1872–1890. [Google Scholar] [CrossRef]
- Angevine, W.M.; Jiang, H.; Mauritsen, T. Performance of an eddy diffusivity–mass flux scheme for shallow cumulus boundary layers. Mon. Weather Rev. 2010, 138, 2895–2912. [Google Scholar] [CrossRef]
- Shin, H.H.; Hong, S.Y. Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions. J. Atmos. Sci. 2013, 70, 3248–3261. [Google Scholar] [CrossRef]
- Martilli, A.; Clappier, A.; Rotach, M.W. An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteorol. 2002, 104, 261–304. [Google Scholar] [CrossRef]
- Durre, I.; Vose, R.S.; Wuertz, D.B. Robust automated quality assurance of radiosonde temperatures. J. Appl. Meteorol. Climatol. 2008, 47, 2081–2095. [Google Scholar] [CrossRef]
- Kropfli, R.A. A review of microwave radar observations in the dry convective planetary boundary layer. Bound.-Layer Meteorol. 1983, 26, 51–67. [Google Scholar] [CrossRef]
- Beyrich, F.; Görsdorf, U. Composing the diurnal cycle of mixing height from simultaneous sodar and wind profiler measurements. Bound.-Layer Meteorol. 1995, 76, 387–394. [Google Scholar] [CrossRef]
- Cimini, D.; De Angelis, F.; Dupont, J.C.; Pal, S.; Haeffelin, M. Mixing layer height retrievals by multichannel microwave radiometer observations. Atmos. Meas. 2013, 6, 2941–2951. [Google Scholar] [CrossRef]
- Rosu, I.A.; Cazacu, M.M.; Prelipceanu, O.S.; Agop, M. A Turbulence-Oriented Approach to Retrieve Various Atmospheric Parameters Using Advanced Lidar Data Processing Techniques. Atmosphere 2019, 10, 38. [Google Scholar] [CrossRef]
- Lolli, S.; Madonna, F.; Rosoldi, M.; Campbell, J.R.; Welton, E.J.; Lewis, J.R.; Pappalardo, G.; Gu, Y. Impact of varying lidar measurement and data processing techniques in evaluating cirrus cloud and aerosol direct radiative effects. Atmos. Meas. Tech. 2018, 11, 1639–1651. [Google Scholar] [CrossRef]
- Reichardt, J.; Wandinger, U.; Klein, V.; Mattis, I.; Hilber, B.; Begbie, R. RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements. Appl. Opt. 2012, 51, 8111–8131. [Google Scholar] [CrossRef] [PubMed]
- Belegante, L.; Cazacu, M.M.; Timofte, A.; Toanca, F.; Vasilescu, J.; Rusu, M.I.; Ajtai, N.; Stefanie, H.I.; Vetres, I.; Ozunu, A.; et al. Case study of the first volcanic ash exercise in Romania using remote sensing techniques. Environ. Eng. Manag. J. 2015, 14, 2503–2504. [Google Scholar]
- Papayannis, A.; Nicolae, D.; Kokkalis, P.; Binietoglou, I.; Talianu, C.; Belegante, L.; Tsaknakis, G.; Cazacu, M.M.; Vetres, I.; Ilic, L. Optical, size and mass properties of mixed type aerosols in Greece and Romania as observed by synergy of lidar and sunphotometers in combination with model simulations: A case study. Sci. Total Environ. 2014, 500, 277–294. [Google Scholar] [CrossRef] [PubMed]
- Flamant, C.; Pelon, J.; Flamant, P.H.; Durand, P. Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Bound. Layer Meteorol. 1997, 83, 247–284. [Google Scholar] [CrossRef]
- Haeffelin, M.; Angelini, F.; Morille, Y.; Martucci, G.; Frey, S.; Gobbi, G.P.; Lolli, S.; O’Dowd, C.D.; Sauvage, L.; Xueref-Rémy, I.; et al. Evaluation of mixing-height retrievals from automatic profiling lidars and ceilometers in view of future integrated networks in Europe. Bound. Layer Meteorol. 2012, 143, 49–75. [Google Scholar] [CrossRef]
- Klett, J.D. Stable analytical inversion solution for processing lidar returns. Appl. Opt. 1981, 20, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Hunt, W.; Vaughan, M.; Hostetler, C.; McGill, M.; Powell, K.; Winker, D.M.; Hu, Y. Estimating random errors due to shot noise in backscatter lidar observations. Appl. Opt. 2006, 45, 4437–4447. [Google Scholar] [CrossRef] [PubMed]
- Hamamatsu, Photomultiplier Tubes, and Photomultipliers Tubes Photonics “Basics and Applications”; Hamamatsu Photonics KK: Iwata City, Japan, 2007.
- Unga, F.; Cazacu, M.M.; Timofte, A.; Bostan, D.; Mortier, A.; Dimitriu, D.G.; Gurlui, S.; Goloub, P. Study of tropospheric aerosol types over Iasi, Romania, during summer of 2012. Environ. Eng. Manag. J. 2013, 12, 297–303. [Google Scholar]
- Cazacu, M.M.; Timofte, A.; Unga, F.; Albina, B.; Gurlui, S. AERONET data investigation of the aerosol mixtures over Iasi area, One-year time scale overview. J. Quant. Spectrosc. Radiat. Transf. 2015, 15357–15364. [Google Scholar] [CrossRef]
- Ajtai, N.; Stefanie, H.; Arghius, V.; Meltzer, M.; Costin, D. Characterization of aerosol optical and microphysical properties over North-Western Romania in correlation with predominant atmospheric circulation patterns, International Multidisciplinary Scientific Geo Conference. Surv. Geol. Min. Ecol. Manag. 2017, 17, 375–382. [Google Scholar]
- Ajtai, N.; Stefanie, H.; Ozunu, A. Description of aerosol properties over Cluj-Napoca derived from AERONET sun photometric data. Environ. Eng. Manag. J. 2013, 12, 227–232. [Google Scholar] [CrossRef]
- Binietoglou, I.; Basart, S.; Alados-Arboledas, L.; Amiridis, V.; Argyrouli, A.; Baars, H.; Baldasano, J.M.; Balis, D.; Belegante, L.; Bravo-Aranda, J.A.; et al. A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals. Atmos. Meas. Tech. 2015, 8, 3577–3600. [Google Scholar] [CrossRef]
- Steinier, J.; Termonia, Y.; Deltour, J. Smoothing and differentiation of data by simplified least square procedure. Anal. Chem. 1972, 44, 1906–1909. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Glossary of Meteorology. Available online: http://glossary.ametsoc.org/wiki/Precipitable_water (accessed on 1 June 2019).
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction; American Meteorological Society: Seattle, WA, USA, 2004; Volume 1115. [Google Scholar]
- Bock, O.; Keil, C.; Richard, E.; Flamant, C.; Bouin, M.N. Validation of precipitable water from ECMWF model analyses with GPS and radiosonde data during the MAP SOP. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2005, 131, 3013–3036. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Z.; Li, D.; Li, Y.; Zhang, N.; Zhao, X.; Chen, J. On the computation of planetary boundary-layer height using the bulk Richardson number method. Geosci. Model. Dev. 2014, 7, 2599–2611. [Google Scholar] [CrossRef]
YSU | BouLac | ACM2 | ShinHong | TEMF | MYJ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PBLH | PBLH | PBLH | PBLH | PBLH | PBLH | ||||||
MAE | 0.128 | MAE | 0.145 | MAE | 0.185 | MAE | 0.12 | MAE | 0.16 | MAE | 0.098 |
MBE | 0.158 | MBE | 0.182 | MBE | 0.236 | MBE | 0.15 | MBE | 0.209 | MBE | 0.129 |
RMSE | 0.302 | RMSE | 0.345 | RMSE | 0.444 | RMSE | 0.284 | RMSE | 0.397 | RMSE | 0.25 |
R2 | 0.98 | R2 | 0.981 | R2 | 0.986 | R2 | 0.982 | R2 | 0.974 | R2 | 0.981 |
T2M | T2M | T2M | T2M | T2M | T2M | ||||||
MAE | 0.713 | MAE | 1.011 | MAE | 0.898 | MAE | 0.707 | MAE | 0.89 | MAE | 0.556 |
MBE | 0.048 | MBE | 0.082 | MBE | 0.069 | MBE | 0.048 | MBE | 0.068 | MBE | 0.038 |
RMSE | 0.055 | RMSE | 0.11 | RMSE | 0.094 | RMSE | 0.055 | RMSE | 0.094 | RMSE | 0.046 |
R2 | 0.971 | R2 | 0.948 | R2 | 0.954 | R2 | 0.971 | R2 | 0.949 | R2 | 0.98 |
U10M | U10M | U10M | U10M | U10M | U10M | ||||||
MAE | 0.713 | MAE | 0.784 | MAE | 0.779 | MAE | 0.707 | MAE | 0.716 | MAE | 0.999 |
MBE | 0.608 | MBE | 0.967 | MBE | 0.929 | MBE | 0.602 | MBE | 0.593 | MBE | 0.77 |
RMSE | 0.859 | RMSE | 1.796 | RMSE | 1.826 | RMSE | 0.849 | RMSE | 0.824 | RMSE | 1.051 |
R2 | 0.631 | R2 | 0.371 | R2 | 0.448 | R2 | 0.618 | R2 | 0.696 | R2 | 0.658 |
P2M | P2M | P2M | P2M | P2M | P2M | ||||||
MAE | 1.472 | MAE | 1.521 | MAE | 1.526 | MAE | 1.45 | MAE | 1.347 | MAE | 1.437 |
MBE | 0.015 | MBE | 0.015 | MBE | 0.015 | MBE | 0.014 | MBE | 0.013 | MBE | 0.014 |
RMSE | 0.016 | RMSE | 0.016 | RMSE | 0.016 | RMSE | 0.015 | RMSE | 0.014 | RMSE | 0.015 |
R2 | 0.105 | R2 | 0.145 | R2 | 0.135 | R2 | 0.103 | R2 | 0.036 | R2 | 0.094 |
WV | WV | WV | WV | WV | WV | ||||||
MAE | 0.735 | MAE | 0.734 | MAE | 0.735 | MAE | 0.737 | MAE | 0.73 | MAE | 0.734 |
MBE | 0.457 | MBE | 0.456 | MBE | 0.457 | MBE | 0.459 | MBE | 0.453 | MBE | 0.457 |
RMSE | 0.464 | RMSE | 0.464 | RMSE | 0.464 | RMSE | 0.466 | RMSE | 0.461 | RMSE | 0.464 |
R2 | 0.842 | R2 | 0.871 | R2 | 0.843 | R2 | 0.831 | R2 | 0.727 | R2 | 0.797 |
YSU | BouLac | ACM2 | ShinHong | TEMF | MYJ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PBLH | PBLH | PBLH | PBLH | PBLH | PBLH | ||||||
MAE | 0.198 | MAE | 0.175 | MAE | 0.227 | MAE | 0.219 | MAE | 0.399 | MAE | 0.188 |
MBE | -0.057 | MBE | 0.094 | MBE | 0.226 | MBE | -0.021 | MBE | 0.765 | MBE | 0.019 |
RMSE | 0.411 | RMSE | 0.439 | RMSE | 0.549 | RMSE | 0.487 | RMSE | 1.088 | RMSE | 0.431 |
R2 | 0.906 | R2 | 0.826 | R2 | 0.829 | R2 | 0.933 | R2 | 0.891 | R2 | 0.912 |
T2M | T2M | T2M | T2M | T2M | T2M | ||||||
MAE | 0.616 | MAE | 1.044 | MAE | 0.761 | MAE | 0.909 | MAE | 3.522 | MAE | 0.411 |
MBE | 0.074 | MBE | 0.112 | MBE | 0.084 | MBE | 0.113 | MBE | 0.27 | MBE | 0.048 |
RMSE | 0.119 | RMSE | 0.152 | RMSE | 0.126 | RMSE | 0.17 | RMSE | 0.303 | RMSE | 0.067 |
R2 | 0.98 | R2 | 0.976 | R2 | 0.978 | R2 | 0.963 | R2 | 0.933 | R2 | 0.995 |
U10M | U10M | U10M | U10M | U10M | U10M | ||||||
MAE | 0.472 | MAE | 0.555 | MAE | 0.624 | MAE | 0.493 | MAE | 0.576 | MAE | 0.456 |
MBE | 1.184 | MBE | 0.838 | MBE | 1.528 | MBE | 0.653 | MBE | 0.613 | MBE | 0.739 |
RMSE | 4.777 | RMSE | 1.185 | RMSE | 6.374 | RMSE | 1.052 | RMSE | 0.672 | RMSE | 1.938 |
R2 | 0.45 | R2 | 0.329 | R2 | 0.509 | R2 | 0.37 | R2 | 0.217 | R2 | 0.25 |
P2M | P2M | P2M | P2M | P2M | P2M | ||||||
MAE | 2.249 | MAE | 2.160 | MAE | 2.233 | MAE | 2.241 | MAE | 1.998 | MAE | 2.199 |
MBE | 0.022 | MBE | 0.021 | MBE | 0.022 | MBE | 0.022 | MBE | 0.02 | MBE | 0.022 |
RMSE | 0.025 | RMSE | 0.025 | RMSE | 0.025 | RMSE | 0.026 | RMSE | 0.024 | RMSE | 0.025 |
R2 | 0.922 | R2 | 0.93 | R2 | 0.918 | R2 | 0.939 | R2 | 0.952 | R2 | 0.929 |
WV | WV | WV | WV | WV | WV | ||||||
MAE | 0.48 | MAE | 0.491 | MAE | 0.502 | MAE | 0.46 | MAE | 0.54 | MAE | 0.474 |
MBE | 0.508 | MBE | 0.505 | MBE | 0.506 | MBE | 0.526 | MAE | 0.508 | MBE | 0.336 |
RMSE | 0.508 | RMSE | 0.505 | RMSE | 0.506 | RMSE | 0.527 | RMSE | 0.509 | RMSE | 0.509 |
R2 | 0.76 | R2 | 0.729 | R2 | 0.727 | R2 | 0.714 | R2 | 0.661 | R2 | 0.722 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roșu, I.-A.; Ferrarese, S.; Radinschi, I.; Ciocan, V.; Cazacu, M.-M. Evaluation of Different WRF Parametrizations over the Region of Iași with Remote Sensing Techniques. Atmosphere 2019, 10, 559. https://doi.org/10.3390/atmos10090559
Roșu I-A, Ferrarese S, Radinschi I, Ciocan V, Cazacu M-M. Evaluation of Different WRF Parametrizations over the Region of Iași with Remote Sensing Techniques. Atmosphere. 2019; 10(9):559. https://doi.org/10.3390/atmos10090559
Chicago/Turabian StyleRoșu, Iulian-Alin, Silvia Ferrarese, Irina Radinschi, Vasilica Ciocan, and Marius-Mihai Cazacu. 2019. "Evaluation of Different WRF Parametrizations over the Region of Iași with Remote Sensing Techniques" Atmosphere 10, no. 9: 559. https://doi.org/10.3390/atmos10090559
APA StyleRoșu, I.-A., Ferrarese, S., Radinschi, I., Ciocan, V., & Cazacu, M.-M. (2019). Evaluation of Different WRF Parametrizations over the Region of Iași with Remote Sensing Techniques. Atmosphere, 10(9), 559. https://doi.org/10.3390/atmos10090559