Evaluation of Different WRF Parametrizations over the Region of Iași with Remote Sensing Techniques
Abstract
:1. Introduction
2. WRF Model Setup and Target Area
3. Instrumentation
4. Methods
5. Results
6. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Rao, K.S. Uncertainty analysis in atmospheric dispersion modeling. Pure Appl. Geophys. 2005, 162, 1893–1917. [Google Scholar] [CrossRef]
- Selvam, A.M. Nonlinear dynamics and chaos: Applications in atmospheric sciences. J. Adv. Math. Appl. 2012, 1, 181–205. [Google Scholar] [CrossRef]
- Timofte, A.; Belegante, L.; Cazacu, M.M.; Albina, B.; Talianu, C.; Gurlui, S. Study of planetary boundary layer height from LIDAR measurements and ALARO model. J. Optoelectron. Adv. Mater. 2015, 17, 911–917. [Google Scholar]
- Banks, R.F.; Tiana-Alsina, J.; Baldasano, J.M.; Rocadenbosch, F.; Papayannis, A.; Solomos, S.; Tzanis, C.G. Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign. Atmos. Res. 2016, 176, 185–201. [Google Scholar] [CrossRef]
- Belegante, L.; Nicolae, D.; Nemuc, A.; Talianu, C.; Derognat, C. Retrieval of the boundary layer height from active and passive remote sensors. Comparison with a NWP model. Acta Geophys. 2014, 62, 276–289. [Google Scholar] [CrossRef]
- García-Díez, M.; Fernández, J.; Fita, L.; Yagüe, C. Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Q. J. R. Meteorol. Soc. 2013, 139, 501–514. [Google Scholar] [CrossRef]
- Banks, R.F.; Tiana-Alsina, J.; Rocadenbosch, F.; Baldasano, J.M. Performance evaluation of the boundary-layer height from lidar and the Weather Research and Forecasting model at an urban coastal site in the north-east Iberian Peninsula. Bound. Layer Meteorol. 2015, 157, 265–292. [Google Scholar] [CrossRef]
- Boadh, R.; Satyanarayana, A.N.V.R.; Krishna, T.V.B.P.S.; Madala, S. Sensitivity of PBL schemes of the WRF-ARW model in simulating the boundary layer flow parameters for their application to air pollution dispersion modelling over a tropical station. Atmosfera 2016, 29, 61–81. [Google Scholar] [CrossRef]
- Milovac, J.; Warrach-Sagi, K.; Behrendt, A.; Späth, F.; Ingwersen, J.; Wulfmeyer, V. Inversigation of PBL schemes combining the WRF model simulations with scanning water vapor differential abseorption lidar measurements. J. Geophys. Res. Atmos. 2015, 121, 624–649. [Google Scholar] [CrossRef]
- Sathyanadh, A.; Prabha, T.V.; Balaji, B.; Resmi, E.A.; Karipot, A. Evaluation of WRF PBL parametrization schemes against direct observations during a dry event over the Ganges valley. Atmos. Res. 2017, 193, 125–141. [Google Scholar] [CrossRef]
- Pérez, C.; Jiménez, P.; Jorba, O.; Sicard, M.; Baldasano, J.M. Influence of the PBL scheme on high-resolution photochemical simulations in an urban coastal area over the Western Mediterranean. Atmos. Environ. 2006, 40, 5274–5297. [Google Scholar] [CrossRef]
- Bossioli, E.; Tombrou, M.; Dandou, A.; Athanasopoulou, E.; Varotsos, K.V. The role of planetary boundary-layer parameterizations in the air quality of an urban area with complex topography. Bound. Layer Meteorol. 2009, 131, 53–72. [Google Scholar] [CrossRef]
- Dudhia, J. A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Weather Rev. 1993, 121, 1493–1513. [Google Scholar] [CrossRef]
- Lupașcu, A.; Iriza, A.; Dumitrache, R.C. Using a high resolution topographic data set and analysis of the impact on the forecast of meteorological parameters. Rom. Rep. Phys. 2015, 67, 653–664. [Google Scholar]
- Iriza, A.; Dumitrache, R.C.; Ştefan, S. Numerical modelling of the Bucharest urban heat island with the WRF-urban system. Rom. J. Phys. 2017, 62, 1–14. [Google Scholar]
- Isvoranu, D.; Badescu, V. Comparison Between Measurements and WRF Numerical Simulation of Global Solar Irradiation in Romania. Ann. West. Univ. Timis. Phys. 2013, 57, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Dimitrova, R.; Danchovski, V.; Egova, E.; Vladimirov, E.; Sharma, A.; Gueorguiev, O.; Ivanov, D. Modeling the Impact of Urbanization on Local Meteorological Conditions in Sofia. Atmosphere 2019, 10, 366. [Google Scholar] [CrossRef]
- Run, R.; Case, R.D.T. User’s Guide for the NMM Core of the Weather Research and Forecast (WRF) Modeling System Version 3. Available online: https://dtcenter.org/wrf-nmm/users/docs/user_guide/V3/contents_nmm.pdf (accessed on 15 June 2019).
- Morille, Y.; Haeffelin, M.; Drobinski, P.; Pelon, J. STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data. J. Atmos. Ocean. Technol. 2007, 24, 761–775. [Google Scholar] [CrossRef]
- Hennemuth, B.; Lammert, A. Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter. Bound. Layer Meteorol. 2006, 120, 181–200. [Google Scholar] [CrossRef]
- Weather Research and Forecasting Model. Available online: https://www.mmm.ucar.edu/weather-research-and-forecasting-model (accessed on 10 May 2019).
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Grell, G.A. The weather research and forecasting model: Overview, system efforts, and future directions. Bull. Am. Meteorol. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2; No. NCAR/TN-468+ STR; National Center for Atmospheric Research: Boulder, Co, USA; Mesoscale and Microscale Meteorology Div.: Boulder, CO, USA, 2015. [Google Scholar]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Montávez, J.P.; García-Bustamante, E.; Navarro, J.; Muñoz-Roldán, A. An evaluation of WRF's ability to reproduce the surface wind over complex terrain based on typical circulation patterns. J. Geophys. Res. Atmos. 2013, 118, 7651–7669. [Google Scholar] [CrossRef] [Green Version]
- Geiger, R. Klassifikation Der Klimate Nach W. Köppen (Classification of Climates after W. Köppen); Landolt-Börnstein—Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, alte Serie; Springer: Berlin, Germany, 1954; Volume 3, pp. 603–607. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen−Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Pisciculture Tiganasi. Available online: https://www.producator-agricol.ro/piscicultura/tiganasi (accessed on 1 July 2019).
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1988; p. 666. [Google Scholar]
- Foken, T. Micrometeorolgy; Springer-Verlag: Berlin, Germany, 2016. [Google Scholar] [CrossRef]
- World Population Review. Available online: http://worldpopulationreview.com/countries/romania-population/cities/ (accessed on 1 July 2019).
- Aspen Economic Opportunities & Financing the Economy Program 2018. Available online: http://aspeninstitute.ro/white-paper-aspen-economic-opportunities-financing-the-economy-program-2018/ (accessed on 1 July 2019).
- AirVisual Database. Available online: https://www.airvisual.com/world-most-polluted-cities (accessed on 15 May 2019).
- Hong, S.Y.; Lim, J.O.J. The WRF single-moment 6-class microphysics scheme. Asia-Pac. J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Janić, Z.I. Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. Natl. Ocean. Atmos. Adm. 2001, 437, 1–61. [Google Scholar]
- Pleim, J.E. A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteorol. Climatol. 2007, 46, 1383–1395. [Google Scholar] [CrossRef]
- Bougeault, P.; Lacarrere, P. Parameterization of orography-induced turbulence in a mesobeta--scale model. Mon. Weather Rev. 1989, 117, 1872–1890. [Google Scholar] [CrossRef]
- Angevine, W.M.; Jiang, H.; Mauritsen, T. Performance of an eddy diffusivity–mass flux scheme for shallow cumulus boundary layers. Mon. Weather Rev. 2010, 138, 2895–2912. [Google Scholar] [CrossRef]
- Shin, H.H.; Hong, S.Y. Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions. J. Atmos. Sci. 2013, 70, 3248–3261. [Google Scholar] [CrossRef]
- Martilli, A.; Clappier, A.; Rotach, M.W. An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteorol. 2002, 104, 261–304. [Google Scholar] [CrossRef]
- Durre, I.; Vose, R.S.; Wuertz, D.B. Robust automated quality assurance of radiosonde temperatures. J. Appl. Meteorol. Climatol. 2008, 47, 2081–2095. [Google Scholar] [CrossRef]
- Kropfli, R.A. A review of microwave radar observations in the dry convective planetary boundary layer. Bound.-Layer Meteorol. 1983, 26, 51–67. [Google Scholar] [CrossRef]
- Beyrich, F.; Görsdorf, U. Composing the diurnal cycle of mixing height from simultaneous sodar and wind profiler measurements. Bound.-Layer Meteorol. 1995, 76, 387–394. [Google Scholar] [CrossRef]
- Cimini, D.; De Angelis, F.; Dupont, J.C.; Pal, S.; Haeffelin, M. Mixing layer height retrievals by multichannel microwave radiometer observations. Atmos. Meas. 2013, 6, 2941–2951. [Google Scholar] [CrossRef] [Green Version]
- Rosu, I.A.; Cazacu, M.M.; Prelipceanu, O.S.; Agop, M. A Turbulence-Oriented Approach to Retrieve Various Atmospheric Parameters Using Advanced Lidar Data Processing Techniques. Atmosphere 2019, 10, 38. [Google Scholar] [CrossRef]
- Lolli, S.; Madonna, F.; Rosoldi, M.; Campbell, J.R.; Welton, E.J.; Lewis, J.R.; Pappalardo, G.; Gu, Y. Impact of varying lidar measurement and data processing techniques in evaluating cirrus cloud and aerosol direct radiative effects. Atmos. Meas. Tech. 2018, 11, 1639–1651. [Google Scholar] [CrossRef] [Green Version]
- Reichardt, J.; Wandinger, U.; Klein, V.; Mattis, I.; Hilber, B.; Begbie, R. RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements. Appl. Opt. 2012, 51, 8111–8131. [Google Scholar] [CrossRef] [PubMed]
- Belegante, L.; Cazacu, M.M.; Timofte, A.; Toanca, F.; Vasilescu, J.; Rusu, M.I.; Ajtai, N.; Stefanie, H.I.; Vetres, I.; Ozunu, A.; et al. Case study of the first volcanic ash exercise in Romania using remote sensing techniques. Environ. Eng. Manag. J. 2015, 14, 2503–2504. [Google Scholar]
- Papayannis, A.; Nicolae, D.; Kokkalis, P.; Binietoglou, I.; Talianu, C.; Belegante, L.; Tsaknakis, G.; Cazacu, M.M.; Vetres, I.; Ilic, L. Optical, size and mass properties of mixed type aerosols in Greece and Romania as observed by synergy of lidar and sunphotometers in combination with model simulations: A case study. Sci. Total Environ. 2014, 500, 277–294. [Google Scholar] [CrossRef] [PubMed]
- Flamant, C.; Pelon, J.; Flamant, P.H.; Durand, P. Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Bound. Layer Meteorol. 1997, 83, 247–284. [Google Scholar] [CrossRef]
- Haeffelin, M.; Angelini, F.; Morille, Y.; Martucci, G.; Frey, S.; Gobbi, G.P.; Lolli, S.; O’Dowd, C.D.; Sauvage, L.; Xueref-Rémy, I.; et al. Evaluation of mixing-height retrievals from automatic profiling lidars and ceilometers in view of future integrated networks in Europe. Bound. Layer Meteorol. 2012, 143, 49–75. [Google Scholar] [CrossRef]
- Klett, J.D. Stable analytical inversion solution for processing lidar returns. Appl. Opt. 1981, 20, 211–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Hunt, W.; Vaughan, M.; Hostetler, C.; McGill, M.; Powell, K.; Winker, D.M.; Hu, Y. Estimating random errors due to shot noise in backscatter lidar observations. Appl. Opt. 2006, 45, 4437–4447. [Google Scholar] [CrossRef] [PubMed]
- Hamamatsu, Photomultiplier Tubes, and Photomultipliers Tubes Photonics “Basics and Applications”; Hamamatsu Photonics KK: Iwata City, Japan, 2007.
- Unga, F.; Cazacu, M.M.; Timofte, A.; Bostan, D.; Mortier, A.; Dimitriu, D.G.; Gurlui, S.; Goloub, P. Study of tropospheric aerosol types over Iasi, Romania, during summer of 2012. Environ. Eng. Manag. J. 2013, 12, 297–303. [Google Scholar]
- Cazacu, M.M.; Timofte, A.; Unga, F.; Albina, B.; Gurlui, S. AERONET data investigation of the aerosol mixtures over Iasi area, One-year time scale overview. J. Quant. Spectrosc. Radiat. Transf. 2015, 15357–15364. [Google Scholar] [CrossRef]
- Ajtai, N.; Stefanie, H.; Arghius, V.; Meltzer, M.; Costin, D. Characterization of aerosol optical and microphysical properties over North-Western Romania in correlation with predominant atmospheric circulation patterns, International Multidisciplinary Scientific Geo Conference. Surv. Geol. Min. Ecol. Manag. 2017, 17, 375–382. [Google Scholar]
- Ajtai, N.; Stefanie, H.; Ozunu, A. Description of aerosol properties over Cluj-Napoca derived from AERONET sun photometric data. Environ. Eng. Manag. J. 2013, 12, 227–232. [Google Scholar] [CrossRef]
- Binietoglou, I.; Basart, S.; Alados-Arboledas, L.; Amiridis, V.; Argyrouli, A.; Baars, H.; Baldasano, J.M.; Balis, D.; Belegante, L.; Bravo-Aranda, J.A.; et al. A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals. Atmos. Meas. Tech. 2015, 8, 3577–3600. [Google Scholar] [CrossRef] [Green Version]
- Steinier, J.; Termonia, Y.; Deltour, J. Smoothing and differentiation of data by simplified least square procedure. Anal. Chem. 1972, 44, 1906–1909. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Glossary of Meteorology. Available online: http://glossary.ametsoc.org/wiki/Precipitable_water (accessed on 1 June 2019).
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction; American Meteorological Society: Seattle, WA, USA, 2004; Volume 1115. [Google Scholar]
- Bock, O.; Keil, C.; Richard, E.; Flamant, C.; Bouin, M.N. Validation of precipitable water from ECMWF model analyses with GPS and radiosonde data during the MAP SOP. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2005, 131, 3013–3036. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Z.; Li, D.; Li, Y.; Zhang, N.; Zhao, X.; Chen, J. On the computation of planetary boundary-layer height using the bulk Richardson number method. Geosci. Model. Dev. 2014, 7, 2599–2611. [Google Scholar] [CrossRef] [Green Version]
YSU | BouLac | ACM2 | ShinHong | TEMF | MYJ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PBLH | PBLH | PBLH | PBLH | PBLH | PBLH | ||||||
MAE | 0.128 | MAE | 0.145 | MAE | 0.185 | MAE | 0.12 | MAE | 0.16 | MAE | 0.098 |
MBE | 0.158 | MBE | 0.182 | MBE | 0.236 | MBE | 0.15 | MBE | 0.209 | MBE | 0.129 |
RMSE | 0.302 | RMSE | 0.345 | RMSE | 0.444 | RMSE | 0.284 | RMSE | 0.397 | RMSE | 0.25 |
R2 | 0.98 | R2 | 0.981 | R2 | 0.986 | R2 | 0.982 | R2 | 0.974 | R2 | 0.981 |
T2M | T2M | T2M | T2M | T2M | T2M | ||||||
MAE | 0.713 | MAE | 1.011 | MAE | 0.898 | MAE | 0.707 | MAE | 0.89 | MAE | 0.556 |
MBE | 0.048 | MBE | 0.082 | MBE | 0.069 | MBE | 0.048 | MBE | 0.068 | MBE | 0.038 |
RMSE | 0.055 | RMSE | 0.11 | RMSE | 0.094 | RMSE | 0.055 | RMSE | 0.094 | RMSE | 0.046 |
R2 | 0.971 | R2 | 0.948 | R2 | 0.954 | R2 | 0.971 | R2 | 0.949 | R2 | 0.98 |
U10M | U10M | U10M | U10M | U10M | U10M | ||||||
MAE | 0.713 | MAE | 0.784 | MAE | 0.779 | MAE | 0.707 | MAE | 0.716 | MAE | 0.999 |
MBE | 0.608 | MBE | 0.967 | MBE | 0.929 | MBE | 0.602 | MBE | 0.593 | MBE | 0.77 |
RMSE | 0.859 | RMSE | 1.796 | RMSE | 1.826 | RMSE | 0.849 | RMSE | 0.824 | RMSE | 1.051 |
R2 | 0.631 | R2 | 0.371 | R2 | 0.448 | R2 | 0.618 | R2 | 0.696 | R2 | 0.658 |
P2M | P2M | P2M | P2M | P2M | P2M | ||||||
MAE | 1.472 | MAE | 1.521 | MAE | 1.526 | MAE | 1.45 | MAE | 1.347 | MAE | 1.437 |
MBE | 0.015 | MBE | 0.015 | MBE | 0.015 | MBE | 0.014 | MBE | 0.013 | MBE | 0.014 |
RMSE | 0.016 | RMSE | 0.016 | RMSE | 0.016 | RMSE | 0.015 | RMSE | 0.014 | RMSE | 0.015 |
R2 | 0.105 | R2 | 0.145 | R2 | 0.135 | R2 | 0.103 | R2 | 0.036 | R2 | 0.094 |
WV | WV | WV | WV | WV | WV | ||||||
MAE | 0.735 | MAE | 0.734 | MAE | 0.735 | MAE | 0.737 | MAE | 0.73 | MAE | 0.734 |
MBE | 0.457 | MBE | 0.456 | MBE | 0.457 | MBE | 0.459 | MBE | 0.453 | MBE | 0.457 |
RMSE | 0.464 | RMSE | 0.464 | RMSE | 0.464 | RMSE | 0.466 | RMSE | 0.461 | RMSE | 0.464 |
R2 | 0.842 | R2 | 0.871 | R2 | 0.843 | R2 | 0.831 | R2 | 0.727 | R2 | 0.797 |
YSU | BouLac | ACM2 | ShinHong | TEMF | MYJ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PBLH | PBLH | PBLH | PBLH | PBLH | PBLH | ||||||
MAE | 0.198 | MAE | 0.175 | MAE | 0.227 | MAE | 0.219 | MAE | 0.399 | MAE | 0.188 |
MBE | -0.057 | MBE | 0.094 | MBE | 0.226 | MBE | -0.021 | MBE | 0.765 | MBE | 0.019 |
RMSE | 0.411 | RMSE | 0.439 | RMSE | 0.549 | RMSE | 0.487 | RMSE | 1.088 | RMSE | 0.431 |
R2 | 0.906 | R2 | 0.826 | R2 | 0.829 | R2 | 0.933 | R2 | 0.891 | R2 | 0.912 |
T2M | T2M | T2M | T2M | T2M | T2M | ||||||
MAE | 0.616 | MAE | 1.044 | MAE | 0.761 | MAE | 0.909 | MAE | 3.522 | MAE | 0.411 |
MBE | 0.074 | MBE | 0.112 | MBE | 0.084 | MBE | 0.113 | MBE | 0.27 | MBE | 0.048 |
RMSE | 0.119 | RMSE | 0.152 | RMSE | 0.126 | RMSE | 0.17 | RMSE | 0.303 | RMSE | 0.067 |
R2 | 0.98 | R2 | 0.976 | R2 | 0.978 | R2 | 0.963 | R2 | 0.933 | R2 | 0.995 |
U10M | U10M | U10M | U10M | U10M | U10M | ||||||
MAE | 0.472 | MAE | 0.555 | MAE | 0.624 | MAE | 0.493 | MAE | 0.576 | MAE | 0.456 |
MBE | 1.184 | MBE | 0.838 | MBE | 1.528 | MBE | 0.653 | MBE | 0.613 | MBE | 0.739 |
RMSE | 4.777 | RMSE | 1.185 | RMSE | 6.374 | RMSE | 1.052 | RMSE | 0.672 | RMSE | 1.938 |
R2 | 0.45 | R2 | 0.329 | R2 | 0.509 | R2 | 0.37 | R2 | 0.217 | R2 | 0.25 |
P2M | P2M | P2M | P2M | P2M | P2M | ||||||
MAE | 2.249 | MAE | 2.160 | MAE | 2.233 | MAE | 2.241 | MAE | 1.998 | MAE | 2.199 |
MBE | 0.022 | MBE | 0.021 | MBE | 0.022 | MBE | 0.022 | MBE | 0.02 | MBE | 0.022 |
RMSE | 0.025 | RMSE | 0.025 | RMSE | 0.025 | RMSE | 0.026 | RMSE | 0.024 | RMSE | 0.025 |
R2 | 0.922 | R2 | 0.93 | R2 | 0.918 | R2 | 0.939 | R2 | 0.952 | R2 | 0.929 |
WV | WV | WV | WV | WV | WV | ||||||
MAE | 0.48 | MAE | 0.491 | MAE | 0.502 | MAE | 0.46 | MAE | 0.54 | MAE | 0.474 |
MBE | 0.508 | MBE | 0.505 | MBE | 0.506 | MBE | 0.526 | MAE | 0.508 | MBE | 0.336 |
RMSE | 0.508 | RMSE | 0.505 | RMSE | 0.506 | RMSE | 0.527 | RMSE | 0.509 | RMSE | 0.509 |
R2 | 0.76 | R2 | 0.729 | R2 | 0.727 | R2 | 0.714 | R2 | 0.661 | R2 | 0.722 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roșu, I.-A.; Ferrarese, S.; Radinschi, I.; Ciocan, V.; Cazacu, M.-M. Evaluation of Different WRF Parametrizations over the Region of Iași with Remote Sensing Techniques. Atmosphere 2019, 10, 559. https://doi.org/10.3390/atmos10090559
Roșu I-A, Ferrarese S, Radinschi I, Ciocan V, Cazacu M-M. Evaluation of Different WRF Parametrizations over the Region of Iași with Remote Sensing Techniques. Atmosphere. 2019; 10(9):559. https://doi.org/10.3390/atmos10090559
Chicago/Turabian StyleRoșu, Iulian-Alin, Silvia Ferrarese, Irina Radinschi, Vasilica Ciocan, and Marius-Mihai Cazacu. 2019. "Evaluation of Different WRF Parametrizations over the Region of Iași with Remote Sensing Techniques" Atmosphere 10, no. 9: 559. https://doi.org/10.3390/atmos10090559
APA StyleRoșu, I. -A., Ferrarese, S., Radinschi, I., Ciocan, V., & Cazacu, M. -M. (2019). Evaluation of Different WRF Parametrizations over the Region of Iași with Remote Sensing Techniques. Atmosphere, 10(9), 559. https://doi.org/10.3390/atmos10090559