Methodology for Estimating the Lifelong Exposure to PM2.5 and NO2—The Application to European Population Subgroups
Abstract
:1. Introduction
2. Methods and Data
2.1. Principle of Exposure Modelling
2.2. Concentration of Micro-Environments
2.2.1. Outdoor
2.2.2. Indoor
2.2.3. Travel/Commute
2.3. Life Course Trajectory Model
2.4. Validation with Measurement Data
3. Results
3.1. Annual Average Exposure
3.1.1. PM2.5
3.1.2. NO2
3.2. Exposure by Socio-Demographic Status
3.2.1. By Gender
3.2.2. By Income Level
3.2.3. By Degree of Urbanisation
3.2.4. Lifelong Exposure
3.2.5. Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Health Risks of Air Pollution in Europe—HRAPIE Project: Recommendations for Concentration-Response Functions for Cost-Benefit Analysis of Particulate Matter, Ozone and Nitrogen Dioxide; Technical Report; WHO Regional Office for Europe: Copenhagen, Denmark, 2013.
- Polichetti, G.; Cocco, S.; Spinali, A.; Trimarco, V.; Nunziata, A. Effects of particulate matter (PM10, PM2.5 and PM1) on the cardiovascular system. Toxicology 2009, 261, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Tu, Y.; Yu, Z.; Lu, R. PM2.5 and cardiovascular diseases in the elderly: An overview. Int. J. Environ. Res. Public Health 2015, 12, 8187–8197. [Google Scholar] [CrossRef] [PubMed]
- Ha, E.H.; Hong, Y.C.; Lee, B.E.; Woo, B.H.; Schwartz, J.; Christiani, D.C. Is air pollution a risk factor for low birth weight in Seoul? Epidemiology 2001, 12, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Cibella, F.; Cuttitta, G.; Della Maggiore, R.; Ruggieri, S.; Panunzi, S.; de Gaetano, A.; Bucchieri, S.; Drago, G.; Melis, M.R.; la Grutta, S.; et al. Effect of indoor nitrogen dioxide on lung function in urban environment. Environ. Res. 2015, 138, 8–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruize, H.; Hänninen, O.; Breugelmans, O.; Lebret, E.; Jantunen, M. Description and demonstration of the EXPOLIS simulation model: Two examples of modeling population exposure to particulate matter. J. Expo. Sci. Environ. Epidemiol. 2003, 13, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Brunekreef, B.; Janssen, N.A.; de Hartog, J.J.; Oldenwening, M.; Meliefste, K.; Hoek, G.; Lanki, T.; Timonen, K.L.; Vallius, M.; Pekkanen, J.; et al. Personal, indoor, and outdoor exposures to PM2.5 And its components for groups of cardiovascular patients in Amsterdam And Helsinki. Res. Rep. Health Eff. Inst. 2005, 127, 1–70. [Google Scholar]
- Hänninen, O.; Hoek, G.; Mallone, S.; Chellini, E.; Katsouyanni, K.; Gariazzo, C.; Cattani, G.; Marconi, A.; Molnár, P.; Bellander, T.; et al. Seasonal patterns of outdoor PM infiltration into indoor environments: Review and meta-analysis of available studies from different climatological zones in Europe. Air Qual. Atmos. Health 2011, 4, 221–233. [Google Scholar] [CrossRef]
- Burke, J.M. SHEDS-PM Stochastic Human Exposure and Dose Simulation for Particulate Matter, Users Guide EPA SHEDS-PM 2.1; Technical Report EPA/600/R-05/065; U.S. Environmental Protection Agency: Washington, DC, USA, 2005.
- Gens, A. Modelling the Exposure to Fine Particles and Its Impacts on Human Health in Europe. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2012. [Google Scholar]
- US EPA. Air Pollutants Exposure Model Documentation (APEX, Version 5); Technical Report EPA-452/R-17-001; U.S. Environmental Protection Agency: Washington, DC, USA, 2017.
- Burke, J.M.; Zufall, M.J.; Özkaynak, H. A population exposure model for particulate matter: Case study results for PM2.5 in Philadelphia, PA. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 470–489. [Google Scholar] [CrossRef]
- Branis, M.; Linhartova, M. Association between unemployment, income, education level, population size and air pollution in Czech cities: Evidence for environmental inequality? A pilot national scale analysis. Health Place 2012, 18, 1110–1114. [Google Scholar] [CrossRef]
- Byun, H.; Bae, H.; Kim, D.; Shin, H.; Yoon, C. Effects of socioeconomic factors and human activities on children’s PM10 exposure in inner-city households in Korea. Int. Arch. Occup. Environ. Health 2010, 83, 867–878. [Google Scholar] [CrossRef]
- Georgopoulos, P.; Lioy, P.J. Conceptual and theoretical aspects of human exposure and dose assessment. J. Expo. Anal. Environ. Epidemiol. 1994, 4, 253–285. [Google Scholar]
- Duan, N. Models for human exposure to air pollution. Environ. Int. 1982, 8, 305–309. [Google Scholar] [CrossRef]
- Lioy, P.; Weisel, C. Exposure Science: Basic Principles and Applications; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Fisher, K.; Gershuny, J. Multinational Time Use Study: User’s Guide and Documentation, version 9; Technical Report; Centre for Time Use Research: Oxford, UK, 2016. [Google Scholar]
- Tainio, M.; Tuomisto, J.T.; Pekkanen, J.; Karvosenoja, N.; Kupiainen, K.; Porvari, P.; Sofiev, M.; Karppinen, A.; Kangas, L.; Kukkonen, J. Uncertainty in health risks due to anthropogenic primary fine particulate matter from different source types in Finland. Atmos. Environ. 2010, 44, 2125–2132. [Google Scholar] [CrossRef]
- Arunraj, N.S.; Mandal, S.; Maiti, J. Modeling uncertainty in risk assessment: An integrated approach with fuzzy set theory and Monte Carlo simulation. Accid. Anal. Prev. 2013, 55, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.; Benedictow, A.; Berge, H.; Bergström, R.; Emberson, L.D.; Fagerli, H.; Flechard, C.R.; Hayman, G.D.; Gauss, M.; Jonson, J.E.; et al. The EMEP MSC-W chemical transport model-technical description. Atmos. Chem. Phys. 2012, 12, 7825–7865. [Google Scholar] [CrossRef]
- Horálek, J.; Denby, B.; de Smet, P.; de Leeuw, F.; Kurfürst, P.; Swart, R.; van Noije, T. Spatial Mapping of Air Quality for European Scale Assessment; Technical Report ETC/ACC Technical Paper 2006/6; European Topic Centre on Air and Climate Change: Bilthoven, The Netherlands, 2007. [Google Scholar]
- Horálek, J.; de Smet, P.; de Leeuw, F.; Kurfürst, P. European NO2 Air Quality Map for 2014; Technical Report ETC/ACM Technical Paper 2017/6; European Topic Centre on Air and Climate Change: Bilthoven, The Netherlands, 2017. [Google Scholar]
- McKeen, S.; Wilczak, J.; Grell, G.; Djalalova, I.; Peckham, S.; Hsie, E.Y.; Gong, W.; Bouchet, V.; Menard, S.; Moffet, R.; et al. Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004. J. Geophys. Res. Atmos. 2005, 110, D21. [Google Scholar] [CrossRef]
- Van Aardenne, J.A.; Dentener, F.J.; Olivier, J.G.J.; Klein Goldewijk, C.G.M.; Lelieveld, J. A 1°×1° resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990. Glob. Biogeochem. Cycles 2001, 15, 909–928. [Google Scholar] [CrossRef]
- University of Stuttgart. EcoSense Web2. 2018. Available online: http://ecosenseweb.ier.uni-stuttgart.de (accessed on 1 September 2018).
- Schieberle, C.; Li, N.; Friedrich, R. Report on the Development of a Probabilistic Exposure Modelling Framework to Assess External Exposure to Chemicals for Selected Population Groups; Technical Report; HEALS Consortium: Paris, France, 2016. [Google Scholar]
- Thornburg, J.; Ensor, D.S.; Rodes, C.E.; Lawless, P.A.; Sparks, L.E.; Mosley, R.B. Penetration of particles into buildings and associated physical factors. Part I: Model development and computer simulations. Aerosol Sci. Technol. 2001, 34, 284–296. [Google Scholar] [CrossRef]
- Földváry, V.; Bekö, G.; Langer, S.; Arrhenius, K.; Petráš, D. Effect of energy renovation on indoor air quality in multifamily residential buildings in Slovakia. Build. Environ. 2017, 122, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Hänninen, O.O.; Lebret, E.; Ilacqua, V.; Katsouyanni, K.; Künzli, N.; Srám, R.J.; Jantunen, M. Infiltration of ambient PM2.5 and levels of indoor generated non-ETS PM2.5 in residences of four European cities. Atmos. Environ. 2004, 38, 6411–6423. [Google Scholar] [CrossRef]
- University of Western Macedonia. OFFICAIR Modelling System. 2013. Available online: http://www.officair-project.eu (accessed on 1 May 2012).
- Oezkaynak, H.; Xue, J.; Weker, R.; Butler, D.; Koutrakis, P. Particle Team (PTEAM) Study: Analysis of the Data—Final Report, Volume 3; Technical Report EPA/600/R-95/098; U.S. Environmental Protection Agency: Washington, DC, USA, 1996.
- Fabian, P.; Adamkiewicz, G.; Levy, J.I. Simulating indoor concentrations of NO2 and PM2.5 in multifamily housing for use in health-based intervention modeling. Indoor Air 2012, 22, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Lee, K.; Chung, M. Characterization of indoor air quality using multiple measurements of nitrogen dioxide. Indoor Air 2004, 14, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Thornburg, J.W.; Rodes, C.E.; Lawless, P.A.; Stevens, C.D.; Williams, R.W. A pilot study of the influence of residential HAC duty cycle on indoor air quality. Atmos. Environ. 2004, 38, 1567–1577. [Google Scholar] [CrossRef]
- Zhao, P.; Siegel, J.A.; Corsi, R.L. Ozone removal by HVAC filters. Atmos. Environ. 2007, 41, 3151–3160. [Google Scholar] [CrossRef]
- MacIntosh, D.L.; Minegishi, T.; Kaufman, M.; Baker, B.J.; Allen, J.G.; Levy, J.I.; Myatt, T.A. The benefits of whole-house in-duct air cleaning in reducing exposures to fine particulate matter of outdoor origin: A modeling analysis. J. Expo. Sci. Environ. Epidemiol. 2010, 20, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Fortmann, R.; Kariher, P.; Clayton, R. Indoor Air Quality: Residential Cooking Exposures—Final Report; Technical Report 97-300; California Air Resources Board: Sacramento, CA, USA, 2001.
- Struschka, M.; Kilgus, D.; Springmann, M.; Baumbach, G. Effiziente Bereitstellung aktueller Emissionsdaten für die Luftreinhaltung. Texte 2008, 205, 322. [Google Scholar]
- Daisey, J.M.; Mahanama, K.R.R.; Hodgson, A.T. Toxic Volatile Organic Compounds in Environmental Tobacco Smoke: Emission Factors for Modeling Exposures of California Populations; Technical Report LBL-36379; California Air Resources Board: Sacramento, CA, USA, 1994.
- Rickert, W.S.; Robinson, J.C.; Collishaw, N.E. A study of the growth and decay of cigarette smoke NOx in ambient air under controlled conditions. Environ. Int. 1987, 13, 399–408. [Google Scholar] [CrossRef]
- Searl, A. A Review of the Acute and Long Term Impacts of Exposure to Nitrogen Dioxide in the United Kingdom; Technical Report TM/04/03; Institute of Occupational Medicine: Edinburgh, UK, 2004. [Google Scholar]
- He, C.; Morawska, L.; Hitchins, J.; Gilbert, D. Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos. Environ. 2004, 38, 3405–3415. [Google Scholar] [CrossRef]
- Hu, T.; Singer, B.C.; Logue, J.M. Compilation of Published PM2.5 Emission Rates For Cooking, Candles and Incense for Use in Modeling of Exposures in Residences; Technical Report LBNL-5890E; Lawrence Berkeley National Laboratory: Alameda, CA, USA, 2012. [Google Scholar]
- Ferro, A.R.; Kopperud, R.J.; Hildemann, L.M. Source strengths for indoor human activities that resuspend particulate matter. Environ. Sci. Technol. 2004, 38, 1759–1764. [Google Scholar] [CrossRef]
- Adams, H.S.; Nieuwenhuijsen, M.J.; Colvile, R.N.; McMullen, M.A.S.; Khandelwal, P. Fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. Sci. Total Environ. 2001, 279, 29–44. [Google Scholar] [CrossRef]
- Briggs, D.J.; de Hoogh, K.; Morris, C.; Gulliver, J. Effects of travel mode on exposures to particulate air pollution. Environ. Int. 2008, 34, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Zagury, E.; le Moullec, Y.; Momas, I. Exposure of Paris taxi drivers to automobile air pollutants within their vehicles. Occup. Environ. Med. 2000, 57, 406–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riediker, M.; Williams, R.; Devlin, R.; Griggs, T.; Bromberg, P. Exposure to particulate matter, volatile organic compounds, and other air pollutants inside patrol cars. Environ. Sci. Technol. 2003, 37, 2084–2093. [Google Scholar] [CrossRef] [PubMed]
- Van Roosbroeck, S.; Wichmann, J.; Janssen, N.A.H.; Hoek, G.; van Wijnen, J.H.; Lebret, E.; Brunekreef, B. Long-term personal exposure to traffic-related air pollution among school children, a validation study. Sci. Total Environ. 2006, 368, 565–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuurbier, M.; Hoek, G.; Oldenwening, M.; Lenters, V.; Meliefste, K.; van den Hazel, P.; Brunekreef, B. Commuters’ exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ. Health Perspect. 2010, 118, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Schieberle, C.; Li, N.; Friedrich, R. Report on the Application of the Exposure Modeling Framework To Population Studies Covered in Stream 5; Technical Report; HEALS Consortium: Paris, France, 2017. [Google Scholar]
- Jantunen, M.J.; Hänninen, O.; Katsouyanni, K.; Knöppel, H.; Kuenzli, N.; Lebret, E.; Maroni, M.; Saarela, K.; Sram, R.; Zmirou, D. Air pollution exposure in European cities: The ‘EXPOLIS’ study. J. Expo. Anal. Environ. Epidemiol. 1998, 8, 495–518. [Google Scholar]
- Granier, C.; Bessagnet, B.; Bond, T.; d’Angiola, A.; van der Gon, H.D.; Frost, G.J.; Heil, A.; Kaiser, J.W.; Kinne, S.; Klimont, Z.; et al. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Clim. Chang. 2011, 109, 163–190. [Google Scholar] [CrossRef]
- Hammond, D. Health warning messages on tobacco products: A review. Tob. Control 2011, 20, 327–337. [Google Scholar] [CrossRef]
- Vasev, N. Governing energy while neglecting health—The case of Poland. Health Policy 2017, 121, 1147–1153. [Google Scholar] [CrossRef]
- Zelljadt, E.; Velten, E.K.; Prahl, A.; Duwe, M.; Poblocka, A. Assessment of Climate Change Policies in the Context of the European Semester, Country Report: Poland; Technical Report Country Reports 2014; Ecologic Institute: Berlin, Germany, 2014. [Google Scholar]
- Koo, L.C.; Ho, J.H.C.; Ho, C.V.; Matsuki, H.; Shimizu, H.; Mori, T.; Tominaga, S. Personal exposure to nitrogen dioxide and its association with respiratory illness in Hong Kong. Am. Rev. Respir. Dis. 1990, 141, 1119–1126. [Google Scholar] [CrossRef]
- Adgate, J.L.; Reid, H.F.; Morris, R.; Helms, R.W.; Berg, R.A.; Hu, P.C.; Cheng, P.W.; Wang, O.L.; Muelenaer, P.A.; Collier, A.M.; et al. Nitrogen dioxide exposure and urinary excretion of hydroxyproline and desmosine. Arch. Environ. Heal. Int. J. 1992, 47, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Eurobarometer. Tobacco; Technical Report Special Eurobarometer 332; European Commission: Brussels, Belgium, 2010.
- Widera, M.; Kasztelewicz, Z.; Ptak, M. Lignite mining and electricity generation in Poland: The current state and future prospects. Energy Policy 2016, 92, 151–157. [Google Scholar] [CrossRef]
- Uliasz-Bochenczyk, A.; Mokrzycki, E. Emissions from the Polish power industry. Energy 2007, 32, 2370–2375. [Google Scholar] [CrossRef]
Parameter | Micro- Environment | Pollutant | Building Type | ||
---|---|---|---|---|---|
Old | Renovated | New | |||
(h) | home | - | North-western: 0.83 (±0.46), log-normal | 0.5 (±0.1), log-normal [29] | |
Southern: 1.29 (±1.09), log-normal | |||||
Eastern 0.75 (±0.43), log-normal | |||||
Northern 0.81 (±0.85), log-normal [30] | |||||
work | (0.1, 0.6, 1.8), triangular [31] | ||||
p | - | PM2.5 | 0.95 (±0.1), log-normal [32] | ||
NO2 | 1, constant [33] | ||||
k (h) | - | PM2.5 | 0.39 (±0.1), log-normal [32] | 0.3 (±0.1), log-normal [10] | |
NO2 | 0.87 (±0.2), log-normal [33] | 0.63 (±0.15), log-normal [34] |
Parameter | Pollutant | Value |
---|---|---|
PM2.5 | 0.1–0.6, uniform [35] | |
NO2 | 0.05–0.8, uniform [36] | |
N (h) | - | 5 (±2), log-normal, [35] |
D | - | Residential: 0–1.0, uniform [35] |
0.05–0.8, Non-residential: 0.42, constant [37] |
Activity | Pollutant | Value |
---|---|---|
Cooking (µg/min) | PM2.5 | 1125 (±280), normal [12,38] |
NO2 | 270 (±75), normal (Electric stove) [38] | |
1800 (±450), normal (Gas stove) [33] | ||
Wood burning (µg/kJ) | PM2.5 | 13–146, uniform [39] |
NO2 | 58–185, uniform [39] | |
Smoking (µg/cigarette) | PM2.5 | 10950 (±2000), normal [32,40] |
NO2 | 1930 (±644), normal [41,42] | |
Candles/incense (µg/min) | PM2.5 | 5.5–910, uniform [43,44] |
Set table, wash/put away dishes (µg/min) | PM2.5 | 20–180, uniform [43,45] |
Cleaning/other domestic work (µg/min) | PM2.5 | 90–440, uniform [43,45] |
Laundry, ironing, clothing repair (µg/min) | PM2.5 | 20–180, uniform [43,45] |
Imputed personal or household care (µg/min) | PM2.5 | 20–80, uniform [43,45] |
Wash, dress, care for self (µg/min) | PM2.5 | 20–80, uniform [43,45] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Friedrich, R. Methodology for Estimating the Lifelong Exposure to PM2.5 and NO2—The Application to European Population Subgroups. Atmosphere 2019, 10, 507. https://doi.org/10.3390/atmos10090507
Li N, Friedrich R. Methodology for Estimating the Lifelong Exposure to PM2.5 and NO2—The Application to European Population Subgroups. Atmosphere. 2019; 10(9):507. https://doi.org/10.3390/atmos10090507
Chicago/Turabian StyleLi, Naixin, and Rainer Friedrich. 2019. "Methodology for Estimating the Lifelong Exposure to PM2.5 and NO2—The Application to European Population Subgroups" Atmosphere 10, no. 9: 507. https://doi.org/10.3390/atmos10090507
APA StyleLi, N., & Friedrich, R. (2019). Methodology for Estimating the Lifelong Exposure to PM2.5 and NO2—The Application to European Population Subgroups. Atmosphere, 10(9), 507. https://doi.org/10.3390/atmos10090507