Historical Winter Storm Atlas for Germany (GeWiSA)
Abstract
:1. Introduction
2. Material and Methods
2.1. Overview
2.2. Study Area and Evaluated Winter Storms
2.3. Gust Speed (GS) Data
2.4. Predictor Variables (PV)
2.5. LS-Boost Modeling (LSBoost)
2.6. Thin Plate Spline Interpolation (TPS)
3. Results and Discussion
3.1. Median Gust Speed
3.2. Storm Field Factor (STF)
3.3. Winter Storm-Related Gust Speed
3.4. Model Comparison
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Munich RE NatCatSERVICE. Available online: https://natcatservice.munichre.com/ (accessed on 28 May 2019).
- Jung, C.; Schindler, D.; Buchholz, A.; Laible, J. Global Gust Climate Evaluation and Its Influence on Wind Turbines. Energies 2017, 10, 1474. [Google Scholar] [CrossRef]
- Hagen, M.; Bartenschlager, B.; Finke, U. Motion characteristics of thunderstorms in southern Germany. Meteorol. Appl. 1999, 6, 227–239. [Google Scholar] [CrossRef]
- Kunz, M. The skill of convective parameters and indices to predict isolated and severe thunderstorms. Nat. Hazards Earth Syst. Sci. 2007, 7, 327–342. [Google Scholar] [CrossRef] [Green Version]
- Kunz, M.; Sander, J.; Kottmeier, C.H. Recent trends of thunderstorm and hailstorm frequency and their relation to atmospheric characteristics in southwest Germany. Int. J. Climatol. 2009, 29, 2283–2297. [Google Scholar] [CrossRef] [Green Version]
- Pilorz, W.; Laskowski, I.; Łupikasza, E.; Taszarek, M. Wind Shear and the Strength of Severe Convective Phenomena—Preliminary Results from Poland in 2011–2015. Climate 2016, 4, 51. [Google Scholar] [CrossRef]
- Gregow, H.; Laaksonen, A.; Alper, M.E. Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951–2010. Sci. Rep. 2017, 7, 46397. [Google Scholar] [CrossRef]
- Donat, M.G.; Leckebusch, G.C.; Pinto, J.G.; Ulbrich, U. Examination of wind storms over Central Europe with respect to circulation weather types and NAO phases. Int. J. Climatol. 2010, 30, 1289–1300. [Google Scholar] [CrossRef]
- Rasilla, D.; García-Codron, J.C.; Garmendia, C.; Herrera, S.; Rivas, V. Extreme Wave Storms and Atmospheric Variability at the Spanish Coast of the Bay of Biscay. Atmosphere 2018, 9, 316. [Google Scholar] [CrossRef]
- Basu, S.; Zhang, X.; Wang, Z. A Modeling Investigation of Northern Hemisphere Extratropical Cyclone Activity in Spring: The Linkage between Extreme Weather and Arctic Sea Ice Forcing. Climate 2019, 7, 25. [Google Scholar] [CrossRef]
- Durst, C.S. Wind speeds over short periods of time. Meteorol. Mag. 1960, 89, 181–186. [Google Scholar]
- Shanmuganathan, S.; Sallis, P. Data Mining Methods to Generate Severe Wind Gust Models. Atmosphere 2014, 5, 60–80. [Google Scholar] [CrossRef] [Green Version]
- Schelhaas, M.-J.; Nabuurs, G.-J.; Schuck, A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Chang. Biol. 2003, 9, 1620–1633. [Google Scholar] [CrossRef]
- Schindler, D.; Grebhan, K.; Albrecht, A.; Schönborn, J.; Kohnle, U. GIS-based estimation of the winter storm damage probability in forests: A case study from Baden-Wuerttemberg (Southwest Germany). Int. J. Biometeorol. 2012, 56, 57–69. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D.; Albrecht, A.; Buchholz, A. The Role of Highly-Resolved Gust Speed in Simulations of Storm Damage in Forests at the Landscape Scale: A Case Study from Southwest Germany. Atmosphere 2016, 7, 7. [Google Scholar] [CrossRef]
- Valverde, L.J., Jr.; Convertino, M. Insurer Resilience in an Era of Climate Change and Extreme Weather: An Econometric Analysis. Climate 2019, 7, 55. [Google Scholar] [CrossRef]
- Hang, J.; Li, Y. Ventilation strategy and air change rates in idealized high-rise compact urban areas. Build. Environ. 2010, 45, 2754–2767. [Google Scholar] [CrossRef]
- Liu, L.; Wen, Y.; Liang, Y.; Zhang, F.; Yang, T. Extreme Weather Impacts on Inland Waterways Transport of Yangtze River. Atmosphere 2019, 10, 133. [Google Scholar] [CrossRef]
- Manasseh, R.; Middleton, J.H. The surface wind gust regime and aircraft operations at Sydney Airport. J. Wind Eng. Ind. Aerodyn. 1999, 79, 269–288. [Google Scholar] [CrossRef]
- Etienne, C.; Lehmann, A.; Goyette, S.; Lopez-Moreno, J.I.; Beniston, M. Spatial predictions of extreme wind speeds over Switzerland using generalized additive models. J. Appl. Meteorol. Climatol. 2010, 49, 1956–1970. [Google Scholar] [CrossRef]
- Augter, G.; Roos, M. Berechnung von Sturmintensitäten für Deutschland; Berichte des Deutschen Wetterdienstes; Deutscher Wetterdienst: Offenbach am Main, Germany, 2011; No. 236. (In German)
- Jung, C.; Schindler, D. Modelling monthly near-surface maximum daily gust speed distributions in Southwest Germany. Int. J. Climatol. 2016, 36, 4058–4070. [Google Scholar] [CrossRef]
- Schindler, D.; Jung, C.; Buchholz, A. Using highly resolved maximum gust speed as predictor for forest storm damage caused by the high-impact winter storm Lothar in Southwest Germany. Atmos. Sci. Lett. 2016, 17, 462–469. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D. Sensitivity analysis of the system of wind speed distributions. Energy Convers. Manag. 2018, 177, 376–384. [Google Scholar] [CrossRef]
- Jung, C. High Spatial Resolution Simulation of Annual Wind Energy Yield Using Near-Surface Wind Speed Time Series. Energies 2016, 9, 344. [Google Scholar] [CrossRef]
- Wan, H.; Wang, X.; Swail, V.R. Homogenization and trend analysis of Canadian near-surface wind speeds. J. Clim. 2010, 23, 1209–1225. [Google Scholar] [CrossRef]
- Walshaw, D. Getting the most from your extreme wind data: A step by step guide. J. Res. NIST 1994, 99, 399–411. [Google Scholar] [CrossRef]
- Wieringa, J. Does representative wind information exist? J. Wind Eng. Ind. Aerodyn. 1996, 65, 1–12. [Google Scholar] [CrossRef]
- Petersen, E.L.; Mortensen, N.G.; Landberg, L.; Højstrup, J.; Frank, H.P. Wind power meteorology. Part I: Climate and turbulence. Wind Energy 1998, 1, 25–45. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D. Development of a statistical bivariate wind speed-wind shear model (WSWS) to quantify the height-dependent wind resource. Energy Convers. Manag. 2017, 149, 303–317. [Google Scholar] [CrossRef]
- CORINE Land Cover. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 28 May 2019).
- CDC (Climate Data Center). Available online: https://cdc.dwd.de/portal/ (accessed on 28 May 2019).
- Wang, X.L. Accounting for autocorrelation in detecting mean-shifts in climate data series using the penalized maximal t or F test. J. Appl. Meteorol. Climatol. 2008, 47, 2423–2444. [Google Scholar] [CrossRef]
- Wang, X.L. Penalized maximal F-test for detecting undocumented mean shifts without trend-change. J. Atmos. Ocean. Technol. 2008, 25, 368–384. [Google Scholar] [CrossRef]
- EU DEM. Available online: https://land.copernicus.eu/imagery-in-situ/eu-dem (accessed on 28 May 2019).
- Wilson, J.D. Determining a topex score. Scott. For. 1984, 38, 251–256. [Google Scholar]
- European Settlement Map. Available online: https://land.copernicus.eu/pan-european/GHSL (accessed on 28 May 2019).
- Silva, J.; Ribeiro, C.; Guedes, R. Roughness length classification of Corine Land Cover classes. In Proceedings of the European Wind Energy Conference, Milan, Italy, 7–10 May 2007. [Google Scholar]
- Friedman, J. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Van Heijst, D.; Potharst, R.; van Wezel, M. A support system for predicting eBay end prices. Decis. Support Syst. 2008, 44, 970–982. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.; Schindler, D. 3D statistical mapping of Germany’s wind resource using WSWS. Energy Convers. Manag. 2018, 159, 96–108. [Google Scholar] [CrossRef]
- Wood, S.N. Thin-plate regression splines. J. R. Stat. Soc. Ser. B 2003, 65, 95–114. [Google Scholar] [CrossRef]
- Heneka, P.; Hofherr, T.; Ruck, B.; Kottmeier, C. Winter storm risk of residential structures—Model development and application to the German state of Baden-Württemberg. Nat. Hazards Earth Syst. Sci. 2006, 6, 721–733. [Google Scholar] [CrossRef]
ID | Winter Storm | Duration | Losses (US$m) | ID | Winter Storm | Duration | Losses (US$m) |
---|---|---|---|---|---|---|---|
1 | - | 3 January 81 | 51 | 50 | Winnie | 24–25 October 98 | 130 |
2 | - | 3 February 81 | 25 | 51 | Lothar | 26 December 99 | 2200 |
3 | - | 15–16 December 82 | 26 | 52 | Anatol | 3–4 December 99 | 410 |
4 | - | 9 October 82 | 13 | 53 | Lara | 4–6 February 99 | 140 |
5 | - | 10 December 82 | 8 | 54 | Ginger | 28 May 00 | 310 |
6 | - | 18 January 83 | 130 | 55 | Kerstin | 29–30 January 00 | 120 |
7 | - | 26–28 November 83 | 130 | 56 | Oratia | 29–30 October 00 | 93 |
8 | - | 1 February 83 | 110 | 57 | - | 10–11 December 00 | 15 |
9 | - | 22–24 November 84 | 220 | 58 | - | 9 November 01 | 31 |
10 | - | 3 January 84 | 58 | 59 | Jeanett | 26–28 October 02 | 1700 |
11 | - | 20 October 84 | 29 | 60 | Anna | 26–27 February 02 | 730 |
12 | - | 7–8 February 84 | 3 | 61 | Jennifer | 28–29 January 02 | 410 |
13 | - | 6 December 85 | 44 | 62 | Calvann | 2–3 January 03 | 360 |
14 | - | 6 November 85 | 29 | 63 | January | 21 December 03 | 120 |
15 | - | 19–20 December 86 | 430 | 64 | Hanne | 12–14 January 04 | 330 |
16 | - | 20–23 October86 | 430 | 65 | - | 17 December 04 | 320 |
17 | - | 19–20 January86 | 430 | 66 | Oralie | 20–21 March 04 | 270 |
18 | - | 12 November 87 | 9 | 67 | Queenie | 31 January–1 February 04 | 170 |
19 | - | 29 February–1 March 88 | 86 | 68 | Gerda | 12–13 January 04 | 140 |
20 | - | 7–8 October 88 | 26 | 69 | Cyrus | 15–16 December 05 | 530 |
21 | - | 8–9 October88 | 17 | 70 | Thorsten | 25–27 November 05 | 320 |
22 | - | 6 December 88 | 9 | 71 | Erwin | 8–9 January 05 | 160 |
23 | - | 19 December 88 | 5 | 72 | Ulf | 12–13 February 05 | 140 |
24 | - | 4–6 April 89 | 18 | 73 | Ingo | 21 January 05 | 74 |
25 | Daria | 25–26 January 90 | 1800 | 74 | Britta | 31 October–2 November 06 | 520 |
26 | Vivian | 25–27 February 90 | 1800 | 75 | - | 30 December 06–1 January 07 | 130 |
27 | Wiebke | 28 February–1 March 90 | 1800 | 76 | Vera | 8 December 06 | 67 |
28 | Herta | 3–4 February 90 | 900 | 77 | Kyrill | 18–19 January 07 | 5100 |
29 | Ottilie/Polly | 13–15 February 90 | 270 | 78 | Franz | 11–12 January 07 | 93 |
30 | Nora | 17–18 October 91 | 30 | 79 | Fridtijof | 2–3 December 07 | 51 |
31 | Undine | 6–9 January 91 | 7 | 80 | Emma | 1–2 March 08 | 840 |
32 | Ismene | 26 November 92 | 730 | 81 | Kristen | 12 March 08 | 250 |
33 | Coranna | 11–12 November 92 | 280 | 82 | Resi | 31 January–1 February 08 | 4 |
34 | - | 13 March 92 | 7 | 83 | Annette | 23–24 February 08 | 3 |
35 | Wilma | 26 October 92 | 4 | 84 | Quinten | 9–10 February 09 | 53 |
36 | - | 2–3 December 92 | 3 | 85 | Xynthia | 28 February 10 | 920 |
37 | Verena | 13–14 January 93 | 500 | 86 | Joachim | 16–17 December 11 | 200 |
38 | Barbara | 23–24 January 93 | 240 | 87 | Andrea | 5–6 January 12 | 240 |
39 | Quena | 8–9 December 93 | 200 | 88 | Ulli/Emil | 3 January 12 | 82 |
40 | Victoria | 19–21 December 93 | 160 | 89 | Christian | 27–29 October 13 | 830 |
41 | Agnes | 22–23 January 93 | 150 | 90 | Xaver | 5–7 December 13 | 260 |
42 | Lore | 27 January 94 | 520 | 91 | Niklas | 30 March–1 April 15 | 1200 |
43 | Grace | 4–5 November 95 | 7 | 92 | Elon/Felix | 8–11 January 15 | 260 |
44 | Sonja | 27–29 March 97 | 260 | 93 | Xavier | 5 October 17 | 500 |
45 | Daniela | 19–20 February 97 | 210 | 94 | Herwart | 29 October 17 | 290 |
46 | Gisela/Heidi | 25 February 97 | 100 | 95 | Sebastian | 13–14 September 17 | 160 |
47 | - | 13–14 February 97 | 78 | 96 | Egon | 12–13 January 17 | 120 |
48 | Xylia | 27–29 October 98 | 370 | 97 | Friederike | 18 January 18 | 1900 |
49 | - | 4–5 March 98 | 270 | 98 | Burglind | 3 January 18 | 240 |
Symbol | Name | Sector (°) | Distance (m) | Data Source | Original Resolution |
---|---|---|---|---|---|
h | measuring height | - | - | DWD | - |
lon | longitude | - | - | - | - |
lat | latitude | - | - | - | - |
ε | elevation | - | - | EU-DEM v.1 | 20 m × 20 m |
η1000 | relative elevation | 1–360 | 1000 | EU-DEM v.1 | 20 m × 20 m |
η3000 | relative elevation | 1–360 | 3000 | EU-DEM v.1 | 20 m × 20 m |
η5000 | relative elevation | 1–360 | 5000 | EU-DEM v.1 | 20 m × 20 m |
η7500 | relative elevation | 1–360 | 7500 | EU-DEM v.1 | 20 m × 20 m |
ηn | relative elevation | 337.5–22.4 | 3000 | EU-DEM v.1 | 20 m × 20 m |
ηne | relative elevation | 22.5–67.4 | 3000 | EU-DEM v.1 | 20 m × 20 m |
ηe | relative elevation | 67.5–112.4 | 3000 | EU-DEM v.1 | 20 m × 20 m |
ηse | relative elevation | 112.5–157.4 | 3000 | EU-DEM v.1 | 20 m × 20 m |
ηs | relative elevation | 157.5–202.4 | 3000 | EU-DEM v.1 | 20 m × 20 m |
ηsw | relative elevation | 202.5–247.4 | 3000 | EU-DEM v.1 | 20 m × 20 m |
ηw | relative elevation | 247.5–292.4 | 3000 | EU-DEM v.1 | 20 m × 20 m |
ηnw | relative elevation | 292.5–337.4 | 3000 | EU-DEM v.1 | 20 m × 20 m |
σn | sheltering | 337.5–22.4 | 1000 | EU-DEM v.1 | 20 m × 20 m |
σne | sheltering | 22.5–67.4 | 1000 | EU-DEM v.1 | 20 m × 20 m |
σe | sheltering | 67.5–112.4 | 1000 | EU-DEM v.1 | 20 m × 20 m |
σse | sheltering | 112.5–157.4 | 1000 | EU-DEM v.1 | 20 m × 20 m |
σs | sheltering | 157.5–202.4 | 1000 | EU-DEM v.1 | 20 m × 20 m |
σsw | sheltering | 202.5–247.4 | 1000 | EU-DEM v.1 | 20 m × 20 m |
σw | sheltering | 247.5–292.4 | 1000 | EU-DEM v.1 | 20 m × 20 m |
σnw | sheltering | 292.5–337.4 | 1000 | EU-DEM v.1 | 20 m × 20 m |
σsum | sheltering | 1–360 | 1000 | EU-DEM v.1 | 20 m × 20 m |
z0,25 | roughness length | 1–360 | 25 | ESM 2012 R 2017 | 2.5 m × 2.5 m |
z0,100 | roughness length | 1–360 | 100 | ESM 2012 R 2017 | 2.5 m × 2.5 m |
z0,200 | roughness length | 1–360 | 200 | ESM 2012 R 2017 | 2.5 m × 2.5 m |
z0,400 | roughness length | 1–360 | 400 | ESM 2012 R 2017 | 2.5 m × 2.5 m |
z0,n | roughness length | 337.5–22.4 | 400 | ESM 2012 R 2017 | 2.5 m × 2.5 m |
z0,ne | roughness length | 22.5–67.4 | 400 | ESM 2012 R 2017 | 2.5 m × 2.5 m |
z0,e | roughness length | 67.5–112.4 | 400 | ESM 2012 R 2017 | 2.5 m × 2.5 m |
z0,se | roughness length | 112.5–157.4 | 400 | ESM 2012 R 2017 | 2.5 m × 2.5 m |
z0,s | roughness length | 157.5–202.4 | 400 | ESM 2012 R 2017 | 2.5 m × 2.5 m |
z0,sw | roughness length | 202.5–247.4 | 400 | ESM 2012 R 2017 | 2.5 m × 2.5 m |
z0,w | roughness length | 247.5–292.4 | 400 | ESM 2012 R 2017 | 2.5 m × 2.5 m |
z0,nw | roughness length | 292.5–337.4 | 400 | ESM 2012 R 2017 | 2.5 m × 2.5 m |
Name | z0 (mm) |
---|---|
BU Buildings | 1600 |
BU Area-Street Green NDVI | 100 |
BU Area-Green Urban Atlas | 500 |
BU Area-Green NDVI | 500 |
BU Area-Streets | 100 |
BU Area-Open Space | 1 |
NBU Area-Street Green NDVI | 100 |
NBU Area-Green NDVI | 750 |
NBU Area-Streets | 100 |
NBU Area-Open Space | 30 |
Railways | 100 |
Water | 1 |
PVC | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1 | lon | lat | h | η5000 | ηsw | σne | z0,sw |
2 | lon | lat | h | η7500 | ηs | σsum | z0,400 |
3 | lon | lat | h | η7500 | ηs | σs | z0,sw |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, C.; Schindler, D. Historical Winter Storm Atlas for Germany (GeWiSA). Atmosphere 2019, 10, 387. https://doi.org/10.3390/atmos10070387
Jung C, Schindler D. Historical Winter Storm Atlas for Germany (GeWiSA). Atmosphere. 2019; 10(7):387. https://doi.org/10.3390/atmos10070387
Chicago/Turabian StyleJung, Christopher, and Dirk Schindler. 2019. "Historical Winter Storm Atlas for Germany (GeWiSA)" Atmosphere 10, no. 7: 387. https://doi.org/10.3390/atmos10070387
APA StyleJung, C., & Schindler, D. (2019). Historical Winter Storm Atlas for Germany (GeWiSA). Atmosphere, 10(7), 387. https://doi.org/10.3390/atmos10070387