Estimation of Turbulence Parameters in the Lower Troposphere from ShUREX (2016–2017) UAV Data
Abstract
:1. Introduction
2. Experimental Setup
3. Theoretical Background and Practical Methods
3.1. Theoretical Background
3.2. Practical Methods of Estimating Turbulence Parameters from Pitot and CWT Data
3.3. Examples of Application
3.4. Attempt at Interpretation of the −5/3 Subranges in Terms of Kolmogorov Turbulence
3.5. Additional Evaluation of the Processing Methods
4. Results of Analyses
4.1. Estimation of
4.2. Estimations of , and
4.3. Examples of Profiles
4.4. Statistics for and
4.5. Shear and Richardson Number
5. Analysis of a Data Segment
6. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Dewan, E.M. Turbulent vertical transport due to thin intermittent mixing layers in the atmosphere and other stable fluids. Science 1981, 211, 1041–1042. [Google Scholar] [CrossRef] [PubMed]
- Fukao, S.; Yamanaka, M.D.; Ao, N.; Hocking, W.K.; Sato, T.; Yamamoto, M.; Nakamura, T.; Tsuda, T.; Kato, S. Seasonal variability of vertical eddy diffusivity in the middle atmosphere. 1. Three-year observations by the Middle and Upper atmosphere radar. J. Geophys. Res. Atmos. 1994, 99, 18973–18987. [Google Scholar] [CrossRef]
- Gavrilov, N.; Luce, H.; Crochet, M.; Dalaudier, F.; Fukao, S. Turbulence parameter estimations from high-resolution balloon temperature measurements of the MUTSI-2000 campaign. Ann. Geophys. 2005, 23, 2401–2413. [Google Scholar] [CrossRef] [Green Version]
- Clayson, C.A.; Kantha, L. On turbulence and mixing in the free atmosphere inferred from high-resolution soundings. J. Atmos. Ocean. Technol. 2008, 25, 833–852. [Google Scholar] [CrossRef]
- Schneider, A.; Gerding, M.; Lübken, F.J. Comparing turbulent parameters obtained from LITOS and radiosonde measurements. Atmos. Chem. Phys. 2015, 15, 2159–2166. [Google Scholar] [CrossRef] [Green Version]
- Fritts, D.C.; Wang, L.; Geller, M.A.; Lawrence, D.A.; Werne, J.; Balsley, B.B. Numerical modeling of multiscale dynamics at high Reynodls numbers: Instabilities, turbulence, and an assessment of Ozmidov and Thorpe scales. J. Atmos. Sci. 2016, 73, 555–578. [Google Scholar] [CrossRef]
- Dalaudier, F.; Sidi, C.; Crochet, M.; Vernin, J. Direct evidence of sheets in the atmospheric temperature field. J. Atmos. Sci. 1994, 51, 237–248. [Google Scholar] [CrossRef]
- Wilson, R. Turbulent diffusivity in the free atmosphere inferred by MST radar measurements: A review. Ann. Geophys. 2004, 22, 3869–3887. [Google Scholar] [CrossRef]
- Röttger, J.; Larsen, M.F. UHF/VHF radar techniques for atmospheric research and wind profiler applications. In Radar in Meteorology; Atlas, D., Ed.; American Meteorological Society: Boston, MA, USA, 1990; Chapter 21a. [Google Scholar]
- Theuerkauf, A.; Gerding, M.; Lübken, F.J. LITOS—A new balloon-borne instrument for fine-scale turbulence soundings in the stratosphere. Atmos. Meas. Tech. 2011, 4, 55–66. [Google Scholar] [CrossRef]
- Haack, A.; Gerding, M.; Lübken, F.J. Characteristics of stratospheric turbulent layers measured by LITOS and their relation to the Richardson number. J. Geophys. Res. 2014, 119, 10605–10618. [Google Scholar] [CrossRef]
- Lübken, F.J. On the extraction of turbulent parameters from atmospheric density fluctuations. J. Geophys. Res. 1992, 97, 20385–20395. [Google Scholar] [CrossRef]
- Frehlich, R.; Meillier, Y.; Jensen, M.L. Measurements of boundary layer profiles with in situ sensors and Doppler lidar. J. Amos. Ocean. Tech. 2008, 25, 1328–1340. [Google Scholar] [CrossRef]
- Kit, E.; Hocut, C.M.; Liberzon, D.; Fernando, H.J.S. Fine-scale turbulent bursts in stable atmospheric boundary layer in complex terrain. J. Fluid Mech. 2017, 833, 745–772. [Google Scholar] [CrossRef]
- Lawrence, D.A.; Balsley, B.B. High-resolution atmospheric sensing of multiple atmospheric variables using the DataHawk small airborne measurement system. J. Atmos. Ocean. Technol. 2013, 30, 2352–2366. [Google Scholar] [CrossRef]
- Balsley, B.B.; Lawrence, D.A.; Woodman, R.F.; Fritts, D.C. Fine-scale characteristics of temperature, wind and turbulence in the lower atmosphere (0–1,300 m) over the South Peruvian coast. Bound. Layer Meteorol. 2013, 147, 165–178. [Google Scholar] [CrossRef]
- Balsley, B.B.; Lawrence, D.A.; Fritts, D.C.; Wang, L.; Wan, K.; Werne, J. Fine structure, instabilities, and turbulence in the lower atmosphere: High-resolution in situ slant-path measurements with the DataHawk UAV and comparisons with numerical modeling. J. Atmos. Ocean. Tech. 2018, 35, 619–642. [Google Scholar] [CrossRef]
- Kantha, L.; Lawrence, D.A.; Luce, H.; Hashiguchi, H.; Tsuda, T.; Wilson, R.; Yabuki, M. Shigaraki UAV-Radar Experiment (ShUREX): Overview of the campaign with some preliminary results. Prog. Earth Planet. Sci. 2017, 4, 19. [Google Scholar] [CrossRef]
- Luce, H.; Kantha, L.; Hashiguchi, H.; Lawrence, D.A. Turbulence kinetic energy dissipation rates estimated from concurrent UAV and MU radar measurements. Earth Planets Space 2018, 70, 207. [Google Scholar] [CrossRef]
- Ottersten, H. Atmospheric structure and radar backscattering in clear air. Radio Sci. 1969, 4, 1179–1193. [Google Scholar] [CrossRef]
- Kantha, L.; Luce, H. Mixing coefficient in stably stratified flow. J. Phys. Ocean. 2018, 48, 2649–2665. [Google Scholar] [CrossRef]
- Bluteau, C.E.; Lueck, R.G.; Ivey, G.N.; Jones, N.L.; Book, J.W.; Rice, A.E. Determining mixing rates from concurrent temperature and velocity measurements. J. Atmos. Ocean. Technol. 2017, 34, 2283–2293. [Google Scholar] [CrossRef]
- Ellison, T.H. Turbulent transport of heat and momentum from an infinite rough plane. J. Fluid Mech. 1957, 2, 456–466. [Google Scholar] [CrossRef]
- Lilly, D.K.; Waco, D.E.; Adelfang, S.I. Stratospheric mixing estimated from high-altitude turbulence measurements. J. Appl. Meteorol. 1974, 13, 488–493. [Google Scholar] [CrossRef]
- Gregg, M.C.; D’Asaro, E.A.; Riley, J.J.; Kunze, E. Mixing efficiency on the ocean. Ann. Rev. Mar. Sci. 2018, 10, 443–473. [Google Scholar] [CrossRef] [PubMed]
- Peltier, W.; Caulfield, C. Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech. 2003, 35, 135–167. [Google Scholar] [CrossRef]
- Osborn, T.R. Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Ocean. 1980, 10, 83–89. [Google Scholar] [CrossRef]
- Wilson, R.; Dalaudier, F.; Bertin, F. Estimation of the turbulent fraction in the free atmosphere from MST radar measurements. J. Atmos. Ocean. Technol. 2005, 22, 1326–1339. [Google Scholar] [CrossRef]
- Alisse, J.R.; Sidi, C. Experimental probability density functions of small-scale fluctuations in the stably stratified atmosphere. J. Fluid Mech. 2000, 402, 137–162. [Google Scholar] [CrossRef]
- Dole, J.; Wilson, R. Turbulence dissipation rates and vertical diffusivity in the stratosphere from radar observations. Phys. Chem. Earth Part B 2001, 26, 225–229. [Google Scholar] [CrossRef]
- Gargett, A.E. Evolution of scalar spectra with the decay of turbulence in a stratified fluid. J. Fluid Mech. 1985, 159, 379–407. [Google Scholar] [CrossRef]
- Riley, J.J.; Lindborg, E. Stratified turbulence: A possible interpretation of some geophysical turbulence measurements. J. Atmos. Sci. 2008, 65, 2416–2424. [Google Scholar] [CrossRef]
- Tatarskii, V.I. Wave Propagation in a Turbulent Medium; McGraw-Hill: New York, NY, USA, 1961; 285 p. [Google Scholar]
- Hocking, W.K. On the extraction of atmospheric turbulence parameter from radar backscatter Doppler spectra–I. Theory. J. Atmos. Terr. Phys. 1983, 45, 89–102. [Google Scholar] [CrossRef]
- Frehlich, R.; Meillier, Y.; Jensen, M.A.; Balsley, B.B. Turbulence measurements with the CIRES tethered lifting system during CASES-99: Calibration and spectral analysis of temperature and velocity. J. Atmos. Sci. 2003, 60, 2487–2495. [Google Scholar] [CrossRef]
- Siebert, H.; Lehmann, K.; Wendisch, M. Observations of small-scale turbulence and energy dissipation rates in the cloudy boundary layer. J. Atmos. Sci. 2006, 63, 1451–1466. [Google Scholar] [CrossRef]
- Lindborg, E. The energy cascade in a strongly stratified fluid. J. Fluid Mech. 2006, 550, 207–242. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Q.; Argentini, S.; Sayde, C.; Gentine, P. Turbulence spectra in the stable atmospheric boundary layer. J. Fluid. Mech. 2018. under revision. [Google Scholar]
- Zhang, J.; Chen, H.; Li, Z.; Fan, X.; Peng, L.; Yu, Y.; Cribb, M. Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar. J. Geophys. Res. 2010, 115, D00K30. [Google Scholar] [CrossRef]
- Kudo, A.; Luce, H.; Hashiguchi, H.; Wilson, R. Convective instability underneath midlevel clouds: Comparisons between numerical simulations and VHF radar observations. J. Appl. Meteorol. Climatol. 2015, 54, 2217–2227. [Google Scholar] [CrossRef]
- Gossard, E.E. Radar observations of the free atmosphere: Structure and dynamics. In Radar in Meteorology; Atlas, D., Ed.; American Meteorological Society: Boston, MA, USA, 1990; Chapter 27a. [Google Scholar]
- Hocking, W.K. Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: A review. Radio Sci. 1985, 20, 1403–1422. [Google Scholar] [CrossRef]
- Hocking, W.K.; Röttger, J.; Palmer, R.D.; Sato, T.; Chilson, P.B. Atmospheric Radar; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Bertin, F.; Barat, J.; Wilson, R. Energy dissipation rates, eddy diffusivity, and the Prantl number: An in situ experimental approach and its consequences on radar estimate of turbulent parameters. Radio Sci. 1997, 32, 791–804. [Google Scholar] [CrossRef]
- Gregg, M.C. Diapycnal mixing in the thermocline: A review. J. Geophys. Res. Ocean. 1987, 92, 5249–5286. [Google Scholar] [CrossRef]
- Luce, H.; Crochet, M.; Dalaudier, F.; Sidi, C. Interpretation of VHF ST radar vertical echoes from in situ temperature sheet observations. Radio Sci. 1995, 30, 1003–1025. [Google Scholar] [CrossRef]
- Ghannam, K.; Duman, T.; Salesky, T.S.; Chamecki, M.; Katul, G. The non-local character of turbulence asymmetry in the convective atmospheric boundary layer. Quaterly J. R. Meteorol. Soc. 2017, 143, 494–507. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luce, H.; Kantha, L.; Hashiguchi, H.; Lawrence, D. Estimation of Turbulence Parameters in the Lower Troposphere from ShUREX (2016–2017) UAV Data. Atmosphere 2019, 10, 384. https://doi.org/10.3390/atmos10070384
Luce H, Kantha L, Hashiguchi H, Lawrence D. Estimation of Turbulence Parameters in the Lower Troposphere from ShUREX (2016–2017) UAV Data. Atmosphere. 2019; 10(7):384. https://doi.org/10.3390/atmos10070384
Chicago/Turabian StyleLuce, Hubert, Lakshmi Kantha, Hiroyuki Hashiguchi, and Dale Lawrence. 2019. "Estimation of Turbulence Parameters in the Lower Troposphere from ShUREX (2016–2017) UAV Data" Atmosphere 10, no. 7: 384. https://doi.org/10.3390/atmos10070384
APA StyleLuce, H., Kantha, L., Hashiguchi, H., & Lawrence, D. (2019). Estimation of Turbulence Parameters in the Lower Troposphere from ShUREX (2016–2017) UAV Data. Atmosphere, 10(7), 384. https://doi.org/10.3390/atmos10070384