In-Home Emissions Performance of Cookstoves in Asia and Africa
Abstract
:1. Introduction
2. Methods
2.1. Stove Performance Testing
2.2. Quality Assurance/Quality Control
3. Results and Discussion
3.1. PM2.5 and CO Emission Rates
3.2. Climate Forcing Pollutant Emissions
3.3. Combustion Efficiency and Comparison with Laboratory Data
3.4. Firepower and Fuel Consumption
4. Limitations and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bonjour, S.; Adair-Rohani, H.; Wolf, J.; Bruce, N.G.; Mehta, S.; Prüss-Ustün, A.; Lahiff, M.; Rehfuess, E.A.; Mishra, V.; Smith, K.R. Solid Fuel Use for Household Cooking: Country and Regional Estimates for 1980–2010. Environ. Health Perspect. 2013, 121, 784–790. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Household Air Pollution and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed on 1 March 2019).
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- United Nations Sustainable Development Goals: Ensure access to affordable, reliable, sustainable and modern energy Energy. In United Nations Sustainable Development. Available online: https://www.un.org/sustainabledevelopment/energy/ (accessed on 28 March 2019).
- Berkeley Air. Stove Performance Inventory Report; Prepared for the Global Alliance for Clean Cookstoves; Berkeley Air Monitoring Group: Berkeley, CA, USA, 2012. [Google Scholar]
- Johnson, M.; Edwards, R.; Berrueta, V.; Masera, O. New Approaches to Performance Testing of Improved Cookstoves. Environ. Sci. Technol. 2010, 44, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Roden, C.A.; Bond, T.C. Characterizing Biofuel Combustion with Patterns of Real-Time Emission Data (PaRTED). Environ. Sci. Technol. 2012, 46, 6110–6117. [Google Scholar] [CrossRef]
- Bailis, R.; Berrueta, V.; Chengappa, C.; Dutta, K.; Edwards, R.; Masera, O.; Still, D.; Smith, K.R. Performance testing for monitoring improved biomass stove interventions: Experiences of the Household Energy and Health Project (1). Energy Sustain. Dev. 2007, 11, 57–70. [Google Scholar] [CrossRef]
- Roden, C.A.; Bond, T.C.; Conway, S.; Osorto Pinel, A.B.; MacCarty, N.; Still, D. Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves. Atmos. Environ. 2009, 43, 1170–1181. [Google Scholar] [CrossRef]
- Jetter, J.; Zhao, Y.; Smith, K.R.; Khan, B.; Yelverton, T.; DeCarlo, P.; Hays, M.D. Pollutant Emissions and Energy Efficiency under Controlled Conditions for Household Biomass Cookstoves and Implications for Metrics Useful in Setting International Test Standards. Environ. Sci. Technol. 2012, 46, 10827–10834. [Google Scholar] [CrossRef]
- Habib, G.; Venkataraman, C.; Bond, T.C.; Schauer, J.J. Chemical, Microphysical and Optical Properties of Primary Particles from the Combustion of Biomass Fuels. Environ. Sci. Technol. 2008, 42, 8829–8834. [Google Scholar] [CrossRef] [PubMed]
- ISO. Standard 19867-1: Clean Cookstoves and Clean Cooking Solutions—Harmonized Laboratory Test Protocols—Part. 1: Standard Test Sequence for Emissions and Performance, Safety and Durability; International Organization for Standardization: Geneva, Switzerland, 2018. [Google Scholar]
- Bilsback, K.R.; Eilenberg, S.R.; Good, N.; Heck, L.; Johnson, M.; Kodros, J.K.; Lipsky, E.M.; L’Orange, C.; Pierce, J.R.; Robinson, A.L.; et al. The Firepower Sweep Test: A novel approach to cookstove laboratory testing. Indoor Air 2018, 28, 936–949. [Google Scholar] [CrossRef]
- SeTAR. Indonesian Clean Stove Initiative Pilot Programme: Water Boiling Test Methods and Product Evaluation Criteria (v 30.03.02); Sustainable Energy Technology and Research Centre: Johannesburg, 2014; Available online: http://cleancookingalliance.org/binary-data/DOCUMENT/file/000/000/87-1.pdf (accessed on 20 May 2019).
- Medina, P.; Berrueta, V.; Martínez, M.; Ruiz, V.; Ruiz-Mercado, I.; Masera, O.R. Closing the gap between lab and field cookstove tests: Benefits of multi-pot and sequencing cooking tasks through controlled burning cycles. Energy Sustain. Dev. 2017, 41, 106–111. [Google Scholar] [CrossRef]
- Bailis, R. Kitchen Performance Protocol: Version 3.0. 2007. Available online: https://www.cleancookingalliance.org/binary-data/DOCUMENT/file/000/000/604-1.pdf (accessed on 20 May 2019).
- Johnson, M.A.; Pilco, V.; Torres, R.; Joshi, S.; Shrestha, R.M.; Yagnaraman, M.; Lam, N.L.; Doroski, B.; Mitchell, J.; Canuz, E.; et al. Impacts on household fuel consumption from biomass stove programs in India, Nepal, and Peru. Energy Sustain. Dev. 2013, 17, 403–411. [Google Scholar] [CrossRef]
- Garland, C.; Jagoe, K.; Wasirwa, E.; Nguyen, R.; Roth, C.; Patel, A.; Shah, N.; Derby, E.; Mitchell, J.; Pennise, D.; et al. Impacts of household energy programs on fuel consumption in Benin, Uganda, and India. Energy Sustain. Dev. 2015, 27, 168–173. [Google Scholar] [CrossRef]
- Birch, M.E.; Cary, R.A. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Technol. 1996, 25, 221–241. [Google Scholar] [CrossRef]
- Johnson, M.; Lam, N.; Pennise, D.; Charron, D.; Bond, T.; Modi, V.; Ndemere, J.A. In-Home Emissions of Greenhouse Gas Pollutants from Traditional and Rocket Biomass Stoves in Uganda; United States Agency for International Development: Washington, DC, USA, 2011.
- Roden, C.A.; Bond, T.C.; Conway, S.; Pinel, A.B.O. Emission factors and real-time optical properties of particles emitted from traditional wood burning cookstoves. Environ. Sci. Technol. 2006, 40, 6750–6757. [Google Scholar] [CrossRef]
- Smith, K.R.; Uma, R.; Kishore, V.V.N.; Lata, K.; Joshi, V.; Zhang, J.; Rasmussen, R.A.; Khalil, M.A.K. Greenhouse Gases from Small-Scale Combustion Devices in Developing Countries; Prepared for Office of Air and Radiation; United States Environmental Protection Agency: Washington, DC, USA, 2000.
- WBT Technical Committee. Water Boiling Test Protocol: Version 4.2.2; WBT Technical Committee. Available online: http://cleancookstoves.org/binary-data/DOCUMENT/file/000/000/399-1.pdf (accessed on 20 May 2019).
- ISO. Technical Report 19867-3: Clean Cookstoves and Clean Cooking Solutions—Harmonized Laboratory Test Protocols—Part 3: Voluntary Performance Targets for Cookstoves Based on Laboratory Testing; International Organization for Standardization: Geneva, Switzerland, 2018. [Google Scholar]
- ISO. IWA 11:2012: Guidelines for Evaluating Cookstove Performance; ISO: Geneva, Switzerland, 2012. [Google Scholar]
- WHO. WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization Regional Office for Europe: Bonn, Germany, 2010. [Google Scholar]
- Champion, W.M.; Grieshop, A.P. Pellet-fed gasifier stoves approach gas-stove like performance during in-home use in Rwanda. Environ. Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Johnson, M.A.; Chiang, R.A. Quantitative Guidance for Stove Usage and Performance to Achieve Health and Environmental Targets. Environ. Health Perspect. 2015, 123, 820–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, G.; Jetter, J.; Smith, K.; Williams, C.; Faircloth, J.; Hays, M. Evaluating the Performance of Household Liquefied Petroleum Gas Cookstoves. Environ. Sci. Technol. 2018, 52, 904–915. [Google Scholar] [CrossRef]
- Weyant, C.; Thompson, R.; Lam, N.; Upadhyay, B.; Shrestha, B.; Maharjan, S.; Rai, K.; Adhikari, C.; Fox, M.C.; Pokhrel, A. In-field emission measurements from biogas and liquid petroleum gas (LPG) stoves, In preparation.
- Garland, C.; Delapena, S.; Prasad, R.; L’Orange, C.; Alexander, D.; Johnson, M. Black carbon cookstove emissions: A field assessment of 19 stove/fuel combinations. Atmos. Environ. 2017, 169, 140–149. [Google Scholar] [CrossRef]
- Bond, T.C.; Streets, D.G.; Yarber, K.F.; Nelson, S.M.; Woo, J.H.; Klimont, Z. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Arvesen, A.; Cherubini, F.; Serrano, G.A.; Astrup, R.; Becidan, M.; Belbo, H.; Goile, F.; Grytli, T.; Guest, G.; Lausselet, C.; et al. Cooling aerosols and changes in albedo counteract warming from CO 2 and black carbon from forest bioenergy in Norway. Sci. Rep. 2018, 8, 3299. [Google Scholar] [CrossRef]
- Eilenberg, S.R.; Bilsback, K.R.; Johnson, M.; Kodros, J.K.; Lipsky, E.M.; Naluwagga, A.; Fedak, K.M.; Benka-Coker, M.; Reynolds, B.; Peel, J.; et al. Field measurements of solid-fuel cookstove emissions from uncontrolled cooking in China, Honduras, Uganda, and India. Atmos. Environ. 2018, 190, 116–125. [Google Scholar] [CrossRef]
- Grieshop, A.P.; Jain, G.; Sethuraman, K.; Marshall, J.D. Emission factors of health- and climate-relevant pollutants measured in home during a carbon-finance-approved cookstove intervention in rural India. GeoHealth 2017, 1, 222–236. [Google Scholar] [CrossRef]
- Weyant, C.L.; Chen, P.; Vaidya, A.; Li, C.; Zhang, Q.; Thompson, R.; Ellis, J.; Chen, Y.; Kang, S.; Shrestha, G.R.; et al. Emission Measurements from Traditional Biomass Cookstoves in South Asia and Tibet. Environ. Sci. Technol. 2019, 53, 3306–3314. [Google Scholar] [CrossRef]
- MacCarty, N.; Ogle, D.; Still, D.; Bond, T.; Roden, C. A laboratory comparison of the global warming impact of five major types of biomass cooking stoves. Energy Sustain. Dev. 2008, 12, 56–65. [Google Scholar] [CrossRef]
- Just, B.; Rogak, S.; Kandlikar, M. Characterization of Ultrafine Particulate Matter from Traditional and Improved Biomass Cookstoves. Environ. Sci. Technol. 2013, 47, 3506–3512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, S.C.; Albina, D.O.; Salam, P.A. Emission factors of wood and charcoal-fired cookstoves. Biomass Bioenergy 2002, 23, 453–469. [Google Scholar] [CrossRef]
- Bhattacharya, S.C.; Albina, D.O.; Khaing, A.M. Effects of selected parameters on performance and emission of biomass-fired cookstoves. Biomass Bioenergy 2002, 23, 387–395. [Google Scholar] [CrossRef]
- Jetter, J.J.; Kariher, P. Solid-fuel household cook stoves: Characterization of performance and emissions. Biomass Bioenergy 2009, 33, 294–305. [Google Scholar] [CrossRef]
- Johnson, M.; Edwards, R.; Alatorre Frenk, C.; Masera, O. In-field greenhouse gas emissions from cookstoves in rural Mexican households. Atmos. Environ. 2008, 42, 1206–1222. [Google Scholar] [CrossRef]
- Tian, L.; Lucas, D.; Fischer, S.L.; Lee, S.C.; Hammond, S.K.; Koshland, C.P. Particle and Gas Emissions from a Simulated Coal-Burning Household Fire Pit. Environ. Sci. Technol. 2008, 42, 2503–2508. [Google Scholar] [CrossRef]
- Zhang, J.; Smith, K.R.; Ma, Y.; Ye, S.; Jiang, F.; Qi, W.; Liu, P.; Khalil, M.A.K.; Rasmussen, R.A.; Thorneloe, S.A. Greenhouse gases and other airborne pollutants from household stoves in China: A database for emission factors. Atmos. Environ. 2000, 34, 4537–4549. [Google Scholar] [CrossRef]
- Kituyi, E.; Marufu, L.; Wandiga, S.O.; Jumba, I.O.; Andreae, M.O.; Helas, G. Carbon monoxide and nitric oxide from biofuel fires in Kenya. Energy Convers. Manag. 2001, 42, 1517–1542. [Google Scholar] [CrossRef]
- Preble, C.V.; Hadley, O.L.; Gadgil, A.J.; Kirchstetter, T.W. Emissions and Climate-Relevant Optical Properties of Pollutants Emitted from a Three-Stone Fire and the Berkeley-Darfur Stove Tested under Laboratory Conditions. Environ. Sci. Technol. 2014, 48, 6484–6491. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; Lam, N.; Brant, S.; Gray, C.; Pennise, D. Modeling indoor air pollution from cookstove emissions in developing countries using a Monte Carlo single-box model. Atmos. Environ. 2011, 45, 3237–3243. [Google Scholar] [CrossRef]
- MacCarty, N.; Still, D.; Ogle, D. Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance. Energy Sustain. Dev. 2010, 14, 161–171. [Google Scholar] [CrossRef]
- Johnson, M.; Lam, N.; Wofchuck, T.; Edwards, R.; Pennise, D. In-field charcoal stove emission factors and indoor air pollution in Nairobi, Kenya; Berkeley Air Monitoring Group: Berkeley, CA, USA, 2009. [Google Scholar]
- Stockwell, C.E.; Christian, T.J.; Goetz, J.D.; Jayarathne, T.; Bhave, P.V.; Praveen, P.S.; Adhikari, S.; Maharjan, R.; DeCarlo, P.F.; Stone, E.A.; et al. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources. Atmos. Chem. Phys. 2016, 16, 11043–11081. [Google Scholar] [CrossRef]
- Fleming, L.T.; Weltman, R.; Yadav, A.; Edwards, R.D.; Arora, N.K.; Pillarisetti, A.; Meinardi, S.; Smith, K.R.; Blake, D.R.; Nizkorodov, S.A. Emissions from village cookstoves in Haryana, India and their potential impacts on air quality. Atmos. Chem. Phys. 2018, 18, 15169–15182. [Google Scholar] [CrossRef]
- Smith, K.R.; McCracken, J.P.; Thompson, L.; Edwards, R.; Shields, K.N.; Canuz, E.; Bruce, N. Personal child and mother carbon monoxide exposures and kitchen levels: Methods and results from a randomized trial of woodfired chimney cookstoves in Guatemala (RESPIRE). J. Expo. Sci. Environ. Epidemiol. 2010, 20, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.; Clark, M.L.; Young, B.N.; Benka-Coker, M.L.; Bachand, A.M.; Brook, R.D.; Nelson, T.L.; Volckens, J.; Reynolds, S.J.; L’Orange, C.; et al. Exposure to household air pollution from biomass-burning cookstoves and HbA1c and diabetic status among Honduran women. Indoor Air 2018, 28, 768–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cynthia, A.A.; Edwards, R.D.; Johnson, M.; Zuk, M.; Rojas, L.; Jiménez, R.D.; Riojas-Rodriguez, H.; Masera, O. Reduction in personal exposures to particulate matter and carbon monoxide as a result of the installation of a Patsari improved cook stove in Michoacan Mexico. Indoor Air 2008, 18, 93–105. [Google Scholar] [CrossRef]
- Ruiz-García, V.M.; Edwards, R.D.; Ghasemian, M.; Berrueta, V.M.; Princevac, M.; Vázquez, J.C.; Johnson, M.; Masera, O.R. Fugitive Emissions and Health Implications of Plancha-Type Stoves. Environ. Sci. Technol. 2018, 52, 10848–10855. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.A.; Chiang, R.A. Quantitative Stove Use and Ventilation Guidance for Behavior Change Strategies. J. Health Commun. 2015, 20, 6–9. [Google Scholar] [CrossRef] [PubMed]
Intervention Stove | Location | Baseline Stove | Fuel Type | Organization | Sample Size and Study type | Study Dates/Season |
---|---|---|---|---|---|---|
Jikokoa * Stainless steel natural draft charcoal | Kawangware, Nairobi, Kenya | Kenyan ceramic jiko (KCJ) Charcoal with metal-clad ceramic liner | Traditional and intervention: Charcoal | Developed by BURN Design Lab and manufactured in Nairobi by BURN Manufacturing | KCJ: 25 Jikokoa: 28 Samples were collected in the same homes before and after the introduction of the Jikokoa stove | February–May 2013; Rainy season |
HomeStove * Stainless steel forced draft with thermoelectric generator that powers fan and USB port | Nkowe, peri-urban community outside of Kampala, Uganda | Three-stone fire (TSF) Wood-burning Traditional Charcoal | Traditional: Wood and charcoal Intervention: Wood | BioLite | TSF: 20 HomeStove: 16 Samples were collected in the same homes before and after the introduction of the Homestove | March–September 2013; Between the rainy and dry seasons |
“High Efficiency Stove” (HES) * Natural draft, metal clad ceramic lined, charcoal stove that has been modified for use with wood | Rural village of Châu Lăng in Southern Vietnam | Wood burning, ceramic stove with three pot supports and upper and lower fuel shelves for adjusting the power | Traditional and intervention: Wood, crop residue, and charcoal | Locally produced | Traditional: 19 HES: 16 Samples for the traditional and HES stoves were collected in different homes | June 2013; Rainy season |
Rice Husk Gasifier (RHG) *,# Forced draft, batch-fed metal gasifier. Air is forced by separate blower fan commonly available in Vietnam. | Rural region in the Phú Binh district, Northern Vietnam | Metal support stand for pots placed over an open fire | Traditional: Wood and rice straw Intervention: Rice husk | Locally produced | Traditional: 20 RHG: 20 Samples for the traditional and RGS stoves were collected in different homes | August, 2013; Rainy season |
Éclair + Recycled metal charcoal stove with secondary air holes | Southern coast of Benin | Cloporte Metal cone shaped charcoal stove | Traditional and Intervention: Charcoal | Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) | Baseline: 15 Éclair: 39 Samples for the baseline and Éclair stoves were collected in different homes | July and August of 2013; Rainy season |
Eco Chulha + Stainless steel forced draft gasifier; Batch-fed or continuous feed | Anand district, Gujarat, India | Built-in wood burning mud chulha | Traditional: Wood Intervention: Wood and pellets | Alpha Renewable Energy, Pvt. Ltd. | Traditional Chulha: 16 Eco Chulha wood: 16 Eco Chulha Pellets: 8 Samples were collected in the same homes before and after the introduction of the Eco Chulha stove | August 2013; Rainy season |
Oorja + Force draft gasifier using pellet fuel | Kolhapur. Maharashtra, India | Built-in wood burning mud chulha | Traditional: Wood Intervention: Sugarcane residue pellets | First Energy | Traditional chulha: 6 Oorja: 9 Samples for the traditional chulha and Oorja stoves were collected in different homes | October 2010; End of rainy season |
Liquefied Petroleum Gas (LPG) + | Kampala, Uganda | Charcoal stoves and TSFs | Baseline: Charcoal and wood Intervention: LPG | Wana Energy Solutions | TSF: 5 Charcoal: 14 LPG: 14 Samples for the TSF, charcoal, and LPG stoves were collected in different homes | August 2012; Between rainy and dry seasons |
Stove Type | Country/Region | EC/TC IQR | Source |
---|---|---|---|
TSF | Uganda | 0.16–0.30 | This study |
TSF | Uganda | 0.08–0.13 | Johnson et al. [20] |
Simple wood | Rwanda | ~0.17–0.32 * | Champion and Grieshop [27] |
Simple wood | Honduras | 0.15–0.33 | Roden et al. [9,21] |
Simple wood | Honduras | 0.08–0.14 | Eilenberg et al. [34] |
Traditional chulha | India | 0.10–0.17 | This study |
Traditional chulha | India | 0.26–0.56 | Eilenberg et al. [34] |
Traditional chulha | India | 0.12–0.23 | Grieshop et al. [35] |
Simple wood/chuhla | Tibet and South Asia | 0.10–0.31 | Weyant et al. [36] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, M.A.; Garland, C.R.; Jagoe, K.; Edwards, R.; Ndemere, J.; Weyant, C.; Patel, A.; Kithinji, J.; Wasirwa, E.; Nguyen, T.; et al. In-Home Emissions Performance of Cookstoves in Asia and Africa. Atmosphere 2019, 10, 290. https://doi.org/10.3390/atmos10050290
Johnson MA, Garland CR, Jagoe K, Edwards R, Ndemere J, Weyant C, Patel A, Kithinji J, Wasirwa E, Nguyen T, et al. In-Home Emissions Performance of Cookstoves in Asia and Africa. Atmosphere. 2019; 10(5):290. https://doi.org/10.3390/atmos10050290
Chicago/Turabian StyleJohnson, Michael A., Charity R. Garland, Kirstie Jagoe, Rufus Edwards, Joseph Ndemere, Cheryl Weyant, Ashwin Patel, Jacob Kithinji, Emmy Wasirwa, Tuan Nguyen, and et al. 2019. "In-Home Emissions Performance of Cookstoves in Asia and Africa" Atmosphere 10, no. 5: 290. https://doi.org/10.3390/atmos10050290
APA StyleJohnson, M. A., Garland, C. R., Jagoe, K., Edwards, R., Ndemere, J., Weyant, C., Patel, A., Kithinji, J., Wasirwa, E., Nguyen, T., Khoi, D. D., Kay, E., Scott, P., Nguyen, R., Yagnaraman, M., Mitchell, J., Derby, E., Chiang, R. A., & Pennise, D. (2019). In-Home Emissions Performance of Cookstoves in Asia and Africa. Atmosphere, 10(5), 290. https://doi.org/10.3390/atmos10050290