Identification of Drought Events and Correlations with Large-Scale Ocean–Atmospheric Patterns of Variability: A Case Study in Xinjiang, China
Abstract
:1. Introduction
2. Study Area, Data Sources, and Methodology
2.1. Study Area and Data Sources
2.2. Methodology
2.2.1. Standardized Precipitation Evapotranspiration Index (SPEI)
2.2.2. Links to Large-Scale Ocean–Atmospheric Circulation Patterns
2.2.3. Trend Analysis
2.2.4. Empirical Orthogonal Function Analysis (EOF)
3. Results
3.1. Changes in the Magnitude and Frequency of SPEI
3.2. Spatial Patterns of Drought by EOF
3.3. Major Drought Events Identified over the Past 55 Years
3.4. Correlations and Possible Link between Large-Scale Patterns and Drought Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; Angulo, M.; El Kenawy, A. A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the Palmer Drought Severity Index. J. Hydrometeorol. 2010, 11, 1033–1043. [Google Scholar] [CrossRef]
- Gouveia, C.M.; Trigo, R.M.; Beguería, S.; Vicente-Serrano, S.M. Drought impacts on vegetation activity in the Mediterranean region: An assessment using remote sensing data and multi-scale drought indicators. Glob. Planet. Chang. 2017, 151, 15–27. [Google Scholar] [CrossRef]
- Verdon-Kidd, D.C.; Scanlon, B.R.; Ren, T.; Fernando, D.N. A comparative study of historical droughts over Texas, USA and Murray-Darling Basin, Australia: Factors influencing initialization and cessation. Glob. Planet. Chang. 2017, 149, 123–138. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.; Barbosa, P. European drought climatologies and trends based on a multi-indicator approach. Glob. Planet. Chang. 2015, 127, 50–57. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 204–216. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, T. Drought over East Asia: A review. J. Clim. 2015, 28, 3375–3399. [Google Scholar] [CrossRef]
- Dai, A.G. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.I.; Beguería, S.; Lorenzo-Lacruz, J.; Sanchez-Lorenzo, A.; García-Ruiz, J.M.; Azorin-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R.M.; et al. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett. 2014, 9, 044001. [Google Scholar] [CrossRef] [Green Version]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized Precipitation Evapotranspiration Index (SPEI) revisited: Parameter fitting, evapotranspiration models, kernel weighting, tools, datasets and drought monitoring. Int. J. Clim. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Tao, H.; Borth, H.; Fraedrich, K.; Su, B.; Zhu, X. Drought and wetness variability in the Tarim River Basin and connection to large-scale atmospheric circulation. Int. J. Climatol. 2014, 34, 2678–2684. [Google Scholar] [CrossRef]
- Stagge, J.H.; Kingston, D.G.; Tallaksen, L.M.; Hannah, D.M. Observed drought indices show increasing divergence across Europe. Sci. Rep. 2017, 7, 14045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, F.; Wu, Z.H.; Huang, J.P.; Chassignet, E.P. Evolution of land surface air temperature trend. Nat. Clim. Chang. 2014, 4, 462–466. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H. Impacts of SST Warming in tropical Indian Ocean on CMIP5 model-projected summer rainfall changes over Central Asia. Clim. Dyn. 2016, 46, 3223–3238. [Google Scholar] [CrossRef]
- Chen, F.; Wang, J.; Jin, L.; Zhang, Q.; Li, J.; Chen, J. Rapid warming in mid-latitude central Asia for the past 100 years. Front. Earth Sci. China 2009, 3, 42–50. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.N.; Li, W.; Deng, H.; Fang, G. Potential impacts of climate change on vegetation dynamics in Central Asia. J. Geophys. Res. Atmos. 2015, 120, 12345–12356. [Google Scholar] [CrossRef]
- Shi, Y.; Shen, Y.; Kang, E.; Li, D.; Ding, Y.; Zhang, G.; Hu, R. Recent and future climate change in northwest China. Clim. Chang. 2007, 80, 379–393. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Shen, Y.; Liu, Y.; Zhang, S. Analysis of changing pan evaporation in the arid region of Northwest China. Water Resour. Res. 2013, 49, 2205–2212. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.Q.; Chen, Y.N.; Zhao, Y.; Mao, W.; Xu, Z.; Liu, Y.; Yang, Q. Response of vegetation NDVI to climatic extremes in the arid region of Central Asia: A case study in Xinjiang, China. Theor. Appl. Climatol. 2017. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, Z.; Fan, Y.; Wang, H.; Deng, H. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ. Res. 2015, 139, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Yan, J.; Che, M.; Zhu, Y.; Liu, Z.; Pei, H.; Zhang, H.; Xu, G.; Lin, X. Climate change and the ecological responses in Xinjiang, China: Model simulations and data analyses. Quat. Int. 2013, 311, 108–116. [Google Scholar] [CrossRef]
- Dai, A.G. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. 2011, 116, D12115. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nature Climate Change. Nat. Clim. Chang. 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.N.; Fang, G.H.; Li, Y.P. Multivariate assessment and attribution of droughts in Central Asia. Sci. Rep. 2017, 7, 1316. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, Y.; Pan, Y. Characteristics of drought in the arid region of northwestern China. Clim. Res. 2015, 62, 99–113. [Google Scholar] [CrossRef]
- Li, Y.; Yao, N.; Sahin, S.; Appels, W.M. Spatiotemporal variability of four precipitation-based drought indices in Xinjiang, China. Theor. Appl. Climatol. 2017, 129, 1017–1034. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Singh, V.P.; Bai, Y. SPI-based evaluation of drought events in Xinjiang, China. Nat. Hazards 2012, 64, 481–492. [Google Scholar] [CrossRef]
- Mahmood, R.; Lin, L.S.; Khan, B. Causes of recurring drought patterns in Xinjiang, China. J. Arid Land 2010, 2, 279–285. [Google Scholar]
- Li, Y.; Chen, C.; Sun, C. Drought severity and change in Xinjiang, China, over 1961–2013. Hydrol. Res. 2017, 48, 1343–1362. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Y.; Shi, X.; Li, W.; Wang, H.; Zhang, S.; Fang, G. Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of northwest China. Atmos. Res. 2014, 138, 346–355. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Van der Schrier, G.; Beguería, S.; Azorin-Molina, C.; Lopez-Moreno, J.I. Contribution of precipitation and reference evapotranspiration to drought indices under different climates. J. Hydrol. 2015, 526, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Chen, J.H.; Zhang, X.J.; Feng, S.; Chen, F. Definition of the core zone of the “westerlies-dominated climatic regime”, and its controlling factors during the instrumental period. Sci. China Earth Sci. 2015, 58, 676–684. [Google Scholar] [CrossRef]
- Enfield, D.B.; Mestas-Nunez, A.M.; Trimble, P.J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett. 2001, 28, 2077–2080. [Google Scholar] [CrossRef]
- Knight, J.R.; Allan, R.J.; Folland, C.K.; Vellinga, M.; Mann, M.E. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett. 2005, 32, L20708. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Karl, T.R. Global variations in droughts and wet spells 1900–1995. Geophys. Res. Lett. 1998, 25, 3367–3370. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Pan, Y.; Li, W. Spatial and temporal variability of drought in the arid region of China and its relationships to teleconnection indices. J. Hydrol. 2015, 523, 283–296. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank-Correlation Measures; Charles Griffin: London, UK, 1975. [Google Scholar]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling errors in the estimation of empirical orthogonal functions. Mon. Weather Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Cao, Y.P.; Nan, Z.T.; Cheng, G.D. GRACE gravity satellite observations of terrestrial water storage changes for drought characterization in the arid land of northwestern China. Remote Sens. 2015, 7, 1021–1047. [Google Scholar] [CrossRef]
- CMA. Atlas of Meteorological Drought in China; China Meteorological Press: Beijing, China, 2010; pp. 50–108. (In Chinese) [Google Scholar]
- Schlesinger, M.E.; Ramankutty, N. An oscillation in the global climate system of period 65–70 years. Nature 1994, 367, 723–726. [Google Scholar] [CrossRef]
- Minobe, S. A 50–70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett. 1997, 24, 683–686. [Google Scholar] [CrossRef]
- Qian, C.; Zhou, T. Multidecadal Variability of North China Aridity and Its Relationship to PDO during 1900–2010. J. Clim. 2014, 27, 1210–1222. [Google Scholar] [CrossRef]
- Enomoto, T.; Hoskins, B.J.; Matsuda, Y. The formation mechanism of the Bonin high in August. Q. J. R. Meteorol. Soc. 2003, 129, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q.H.; Wang, B. Circumglobal teleconnection in the Northern Hemisphere summer. J. Clim. 2005, 18, 3483–3505. [Google Scholar] [CrossRef]
- Yao, J.Q.; Yang, Q.; Mao, W.; Zhao, Y.; Xu, X. Precipitation trend–Elevation relationship in arid regions of the China. Glob. Planet. Chang. 2016. [Google Scholar] [CrossRef]
- Sun, C.; Ma, Y. Effects of non-linear temperature and precipitation trends on Loess Plateau droughts. Quat. Int. 2015, 372, 175–179. [Google Scholar] [CrossRef]
- Yao, J.Q.; Zhao, Y.; Chen, Y.N.; Yu, X.J.; Zhang, R.B. Multi-scale assessments of droughts: A case study in Xinjiang, China. Sci. Total Environ. 2018. [Google Scholar] [CrossRef]
- McCabe, G.J.; Palecki, M.A.; Betancount, J.L. Pacific and Atlantic Ocean influences on multi-decadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA 2004, 101, 4136–4141. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; van der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Benitez, J.B.; Domecq, R.M. Analysis of meteorological drought episodes in Paraguay. Clim. Chang. 2014, 127, 15–25. [Google Scholar] [CrossRef]
- Barlow, M.; Nigam, S.; Berbery, E.H. ENSO, Pacific decadal variability, and the U.S. summertime precipitation, drought, and streamflow. J. Clim. 2001, 14, 2105–2128. [Google Scholar] [CrossRef]
- Mo, K.C.; Schemm, J.K.E.; Yoo, S.H. Influence of ENSO and the Atlantic multidecadal oscillation on drought over the United States. J. Clim. 2009, 22, 5962–5982. [Google Scholar] [CrossRef]
Station Name | WMO Number | Latitude (° N) | Longitude (° E) | Elevation (m) | Station Name | WMO Number | Latitude (° N) | Longitude (° E) | Elevation (m) |
---|---|---|---|---|---|---|---|---|---|
Habahe | 51053 | 86.40 | 48.05 | 534 | Hejing | 51559 | 86.40 | 42.32 | 1102 |
Jimunai | 51059 | 85.87 | 47.43 | 984 | Yanqi | 51567 | 86.57 | 42.08 | 1057 |
Burqin | 51060 | 86.87 | 47.70 | 476 | Heshuo | 51568 | 86.80 | 42.25 | 1087 |
Altay | 51076 | 88.08 | 47.73 | 737 | Turpan | 51573 | 89.20 | 42.93 | 37 |
Tacheng | 51133 | 83.00 | 46.73 | 537 | Shansan | 51581 | 90.23 | 42.85 | 399 |
Hoboksar | 51156 | 85.72 | 46.78 | 1294 | Baicheng | 51633 | 81.90 | 41.78 | 1230 |
Qinghe | 51186 | 90.38 | 46.67 | 1220 | Luntai | 51642 | 84.25 | 41.78 | 978 |
Alataw | 51232 | 82.58 | 45.18 | 286 | Korla | 51656 | 86.13 | 41.75 | 933 |
Bole | 51238 | 82.07 | 44.90 | 533 | Torugart | 51701 | 75.40 | 40.52 | 3507 |
Tuoli | 51241 | 83.60 | 45.93 | 1078 | Atux | 51704 | 76.17 | 39.72 | 1299 |
Karamay | 51243 | 84.85 | 46.28 | 446 | Wuqia | 51705 | 75.25 | 39.72 | 2178 |
Baitash | 51288 | 90.53 | 45.37 | 1655 | Aketao | 51708 | 75.95 | 39.15 | 1325 |
Wenquan | 51330 | 81.02 | 44.97 | 1354 | Akqi | 51711 | 78.45 | 40.93 | 1986 |
Mosuowan | 51353 | 86.10 | 45.02 | 347 | Tikanlik | 51765 | 87.70 | 40.63 | 847 |
Shihezi | 51356 | 86.05 | 44.32 | 444 | Ruoqiang | 51777 | 88.17 | 39.03 | 889 |
Caijiahu | 51365 | 87.53 | 44.20 | 441 | Tashkurgan | 51804 | 75.23 | 37.78 | 3094 |
Qitai | 51379 | 89.57 | 44.02 | 794 | Shache | 51811 | 77.27 | 38.43 | 1232 |
Yining | 51431 | 81.33 | 43.95 | 664 | Zepu | 51815 | 77.27 | 38.18 | 1275 |
Gongliu | 51435 | 82.23 | 43.47 | 776 | Pishan | 51818 | 78.28 | 37.62 | 1376 |
Xinyuan | 51436 | 83.30 | 43.45 | 929 | Cele | 51826 | 80.80 | 37.02 | 1337 |
Zhaosu | 51437 | 81.13 | 43.15 | 1855 | Hetian | 51828 | 79.93 | 37.13 | 1375 |
Urumqi | 51463 | 87.62 | 43.78 | 919 | Minfeng | 51839 | 82.72 | 37.07 | 1410 |
Bluntai | 51467 | 86.30 | 42.73 | 1738 | Qiemo | 51855 | 85.55 | 38.15 | 1248 |
Daxigou | 51468 | 86.83 | 43.10 | 3544 | Yutian | 51931 | 81.65 | 36.85 | 1423 |
Daban | 51477 | 88.32 | 43.35 | 1104 | Barko | 52101 | 93.00 | 43.60 | 1651 |
Qijiaojin | 51495 | 91.63 | 43.48 | 874 | Yiwu | 52118 | 94.70 | 43.27 | 1730 |
Kumux | 51526 | 88.22 | 42.23 | 924 | Hami | 52203 | 93.52 | 42.82 | 738 |
Bayanbulak | 51542 | 84.15 | 43.03 | 2459 |
Category | Index Value |
---|---|
Extremely wet | value ≥ 2 |
Moderately wet | 1.5 ≤ value < 1.99 |
Slightly wet | 1 ≤ value < 1.49 |
Near normal | −0.99 < value < 0.99 |
Mild drought | −1.49 < value ≤ −1 |
Moderate drought | −1.99 < value ≤ −1.5 |
Extreme drought | value ≤ −2 |
Station Name | Trend (Decade) | Station Name | Trend (Decade) | Station Name | Trend (Decade) |
---|---|---|---|---|---|
Habahe | 0.03 | Xinyuan | 0.00 | Wuqia | −0.01 |
Jimunai | −0.08 | Zhaosu | −0.14 | Aketao | 0.37 |
Burqin | 0.04 | Urumqi | 0.31 | Akqi | 0.15 |
Altay | 0.15 | Bluntai | −0.02 | Tikanlik | −0.52 |
Tacheng | −0.16 | Daxigou | 0.02 | Ruoqiang | −0.20 |
Hoboksar | −0.19 | Daban | −0.13 | Tashkurgan | −0.14 |
Qinghe | −0.11 | Qijiaojin | −0.51 | Shache | −0.18 |
Alataw | −0.03 | Kumux | −0.23 | Zepu | −0.12 |
Bole | −0.12 | Bayanbulak | −0.08 | Pishan | −0.25 |
Tuoli | −0.15 | Hejing | −0.14 | Cele | −0.37 |
Karamay | 0.06 | Yanqi | −0.30 | Hetian | −0.37 |
Baitash | −0.02 | Heshuo | 0.19 | Minfeng | −0.41 |
Wenquan | 0.26 | Turpan | −0.41 | Qiemo | −0.56 |
Mosuowan | −0.13 | Shansan | −0.47 | Yutian | −0.11 |
Shihezi | −0.11 | Baicheng | 0.07 | Barko | −0.25 |
Caijiahu | −0.08 | Luntai | −0.40 | Yiwu | −0.14 |
Qitai | 0.14 | Korla | −0.36 | Hami | −0.12 |
Yining | 0.00 | Torugart | −0.02 | ||
Gongliu | −0.15 | Atux | 0.06 |
Regions | 1-Month/Decade | 3-Month/Decade | 6-Month/Decade | 12-Month/Decade | 24-Month/Decade |
---|---|---|---|---|---|
Xinjiang | −0.03 | −0.06 | −0.09 | −0.12 | −0.15 |
North Xinjiang | −0.006 | −0.02 | −0.06 | −0.08 | −0.11 |
South Xinjiang | −0.06 | −0.10 | −0.14 | −0.16 | −0.20 |
Rank | Persistent Period (yyyy.mm) | Duration (Months) | Magnitude | Intensity | Stations Affected (%) |
---|---|---|---|---|---|
1 | 2008.05–2009.12 | 20 | 23.28 | 1.16 | 56.36 |
2 | 2006.09–2008.03 | 20 | 19.11 | 0.96 | 50.91 |
3 | 1977.09–1979.03 | 19 | 16.67 | 0.88 | 54.55 |
4 | 2011.09–2012.11 | 15 | 12.59 | 0.84 | 60.00 |
5 | 1981.03–1981.06 | 4 | 3.28 | 0.82 | 94.55 |
6 | 2000.04–2000.10 | 7 | 5.11 | 0.73 | 70.91 |
7 | 2015.03–2015.08 | 6 | 4.36 | 0.73 | 85.45 |
8 | 1974.05–1975.03 | 11 | 7.85 | 0.71 | 63.64 |
9 | 1962.08–1963.05 | 10 | 6.44 | 0.64 | 63.64 |
10 | 2001.10–2002.03 | 6 | 3.75 | 0.63 | 78.18 |
ENSO | Years of Occurrence | Drought Events | Intensity |
---|---|---|---|
El Niño | May 1965–May 1966 | May 1965–February 1966 | 0.73 |
La Niña | June 1973–June 1974 | May 1974–May 1975 | 1.26 |
Weak El Niño | September 1977–February 1978 | September 1977–December 1978 | 0.73 |
Strong El Niño | April 1982–June 1983 | September 1982–May 1983 | 0.98 |
El Niño | May 1991–June 1992 | April 1991–April 1992 | 0.81 |
Strong El Niño | April 1997–April 1998 | April 1997–April 1998 | 1.47 |
La Niña | August 2007–May 2008 | May 2008–June 2009 | 1.41 |
Weak La Niña | August 2011–March 2012 | December 2011–May 2013 | 0.96 |
Strong El Niño | October 2014–April 2016 | February 2015–August 2015 | 0.77 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, J.; Tuoliewubieke, D.; Chen, J.; Huo, W.; Hu, W. Identification of Drought Events and Correlations with Large-Scale Ocean–Atmospheric Patterns of Variability: A Case Study in Xinjiang, China. Atmosphere 2019, 10, 94. https://doi.org/10.3390/atmos10020094
Yao J, Tuoliewubieke D, Chen J, Huo W, Hu W. Identification of Drought Events and Correlations with Large-Scale Ocean–Atmospheric Patterns of Variability: A Case Study in Xinjiang, China. Atmosphere. 2019; 10(2):94. https://doi.org/10.3390/atmos10020094
Chicago/Turabian StyleYao, Junqiang, Dilinuer Tuoliewubieke, Jing Chen, Wen Huo, and Wenfeng Hu. 2019. "Identification of Drought Events and Correlations with Large-Scale Ocean–Atmospheric Patterns of Variability: A Case Study in Xinjiang, China" Atmosphere 10, no. 2: 94. https://doi.org/10.3390/atmos10020094
APA StyleYao, J., Tuoliewubieke, D., Chen, J., Huo, W., & Hu, W. (2019). Identification of Drought Events and Correlations with Large-Scale Ocean–Atmospheric Patterns of Variability: A Case Study in Xinjiang, China. Atmosphere, 10(2), 94. https://doi.org/10.3390/atmos10020094