Effect of Vertical Air Motion on Disdrometer Derived Z-R Coefficients
Abstract
:1. Introduction
2. Data and Their Preprocessing
2.1. Disdrometer Data
2.2. Radiosonde Data
2.3. ECMWF ERA-Interim Reanalysis Data
3. Methodology
3.1. DSD Flux Conservation Model
3.2. Drop Velocity
3.3. Z and R as DSD Moments
3.4. A-b Coefficients
4. Results
4.1. ECMWF versus Radiosonde
4.2. ECMWF and Disdrometer
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Drop diameter | |
Balloon diameter | |
Initial balloon diameter | |
DSD | Drop size distribution |
D0 | Physical drop size cutoff due to updraft |
D1 | Lower limit of the disdrometer sensitivity |
D2 | Upper limit of the disdrometer sensitivity |
ECMWF | European Centre for Medium Range Forecasts |
FAC | Free air correction (in m s−2) |
Drop size distribution flux | |
FCM | Flux conservation model |
GPS | Global Positioning System |
g | Acceleration due to gravity |
Global average of acceleration due to gravity at MSL ( ≡ 9.80665 m s−2) | |
Heaviside Function | |
IGF | International Gravity Formula (in m s−2) |
MSL | Mean Sea level |
Mass of the complete radiosonde-balloon system | |
NA | Not available |
Drop size distribution | |
NWS | National Weather Service, United States of America |
NWP | Numerical weather prediction |
p | Pressure (Pa) |
ps | Surface pressure (Pa) |
q | Specific humidity (in kg kg−1) |
R | Rain rate (in mm h−1) |
RH | Relative humidity (in %) |
Reynold’s number | |
Rd | Gas constant for dry air (287.058 J kg−1 K−1) |
Gas constant for moist air | |
Rv | Gas constant for water vapor (461.5 J kg−1 K−1) |
T | Temperature (in K or oC) |
T0 | Reference temperature (typically taken to be 273.16 K) |
t | Time (s) |
Time when the flow turns to fully laminar | |
Transition time from fully turbulent to laminar | |
UTC | Coordinated Universal Time |
V | Balloon volume (m3) |
Initial balloon volume at the surface before release (m3) | |
Drop terminal velocity | |
Vertical velocity (in m s−1) | |
Average vertical air motion from z = 0 (or surface) to z = height of 10,000 m | |
Calculated balloon still air ascent velocity | |
ECMWF vertical velocity | |
Balloon ascent rate | |
Empirical terminal velocity parameter accounting for deceleration of drops approaching a flat surface | |
Z | Radar reflectivity factor (in mm6 m−3) |
Geopotential height (geopotential meters, gpm) | |
z | Height above MSL (in m) |
Incomplete gamma function | |
Recursion gain factor | |
Marshall–Palmer rainfall rate parameter | |
Parameter accounting for deceleration of drops approaching a flat surface | |
μ | Dynamic viscosity of air (kg m−1·s−1) |
Air density as a function of height | |
Air density at the surface (kg m−3) | |
σ | Vertical coordinate in ECMWF’s hybrid system (σ = p/ps) |
Φ(z) | Geopotential at height z (m2 s−2) |
φ | Latitude |
ω | Pressure tendency (in Pa s−1) |
Appendix B
Time | Pressure | Height | Temperature | Relative Humidity | Virtual Temperature | Dew Point Depression | Lapse Rate | Ascent Rate | |
min | s | hPa | gpm | °C | % | °C | °C | °C km−1 | m s−1 |
0 | 0 | 995.5 | 165 | 14.0 | 94 | 15.7 | 0.9 | 0.0 | 0.0 |
0 | 2 | 993.9 | 179 | 15.1 | 82 | 16.7 | 3.0 | −78.6 | 7.0 |
0 | 4 | 992.9 | 188 | 15.7 | 80 | 17.3 | 3.4 | −66.7 | 4.5 |
. | . | . | . | . | . | . | . | . | . |
. | . | . | . | . | . | . | . | . | . |
References
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science—An Introductory Survey, 2nd ed.; Academic Press: Amsterdam, Denmark, 2006; p. 483. ISBN 0-12-732951-X. [Google Scholar]
- Lynch, A.H.; Cassano, J.J. Applied Atmospheric Dynamics; Wiley: Chichester, UK, 2006. [Google Scholar]
- Holton, J.R.; Hakim, G.J. An Introduction to Dynamical Meteorology, 5th ed.; Academic Press: Amsterdam, Denmark, 2013. [Google Scholar]
- Panofksky, H.A. Methods for computing vertical motion in the atmosphere. J. Meteorol. 1946, 3, 45–49. [Google Scholar] [CrossRef]
- Durran, D.R.; Snellman, L.W. The diagnosis of synoptic-scale vertical motion in an operational environment. Wea. Forecast. 1987, 1, 17–31. [Google Scholar] [CrossRef]
- World Meteorological Organization. Guide to Meteorological Instruments Methods of Observation; WMO-No. 8, (Updated 2010); World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- World Meteorological Organization. Guide to the Global Observing System; 2010 edition (updated 2017), WMO No. 488; World Meteorological Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Haimberger, L. Homogenization of radiosonde temperature time series using innovation statistics. J. Climate 2007, 20, 1377–1403. [Google Scholar] [CrossRef]
- Räisänen, J. Factors affecting synoptic-scale vertical motions: A statistical study using a generalized omega equation. Mon. Wea. Rev. 1995, 123, 2447–2460. [Google Scholar] [CrossRef]
- Giangrande, S.E.; Feng, Z.; Jensen, M.P.; Comstock, J.M.; Johnson, K.L.; Toto, T.; Wang, M.; Burleyson, C.; Bharadwaj, N.; Mei, F.; et al. Cloud characteristics, thermodynamic controls and radiative impacts during the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment. Atmos. Chem. Phys. 2017, 17, 14519–14541. [Google Scholar] [CrossRef] [Green Version]
- Giangrande, S.E.; Luke, E.P.; Kollias, P. Characterization of vertical velocity and drop size distribution parameters in widespread precipitation at ARM facilities. J. Appl. Meteor. Climatol. 2012, 51, 380–391. [Google Scholar] [CrossRef]
- Bühl, J.; Leinweber, R.; Görsdorf, U.; Radenz, M.; Ansmann, A.; Lehmann, V. Combined vertical-velocity observations with Doppler lidar, cloud radar and wind profiler. Atmos. Meas. Tech. 2015, 8, 3527–3536. [Google Scholar] [CrossRef] [Green Version]
- Geerts, B.; Miao, Q. The use of millimeter Doppler radar echoes to estimate vertical air velocities in the fair-weather convective boundary layer. J. Atmos. Oceanic Technol. 2005, 22, 225–246. [Google Scholar] [CrossRef]
- Angevine, W.M. Errors in Mean Vertical Velocities Measured by Boundary Layer Wind Profilers. J. Atmos. Ocean. Tech. 1997, 14, 565–569. [Google Scholar] [CrossRef]
- Taconet, O.; Weill, A. Vertical velocity field in the convective boundary layer as observed with an acoustic Doppler sodar. Bound. Lay. Meteorol. 1982, 23, 133–151. [Google Scholar] [CrossRef]
- Hoppe, C.M.; Ploeger, F.; Konopka, P.; Müller, R. Kinematic and diabatic vertical velocity climatologies from a chemistry climate model. Atmos. Chem. Phys. 2016, 16, 6223–6239. [Google Scholar] [CrossRef] [Green Version]
- Stepanyuk, O.; Räisänen, J.; Sinclair, V.A.; Järvinen, H. Factors affecting atmospheric vertical motions as analyzed with a generalized omega equation and the OpenIFS model. Tellus 2017, 69, 1–9. [Google Scholar] [CrossRef]
- 1Abalos, M.; Legras, B.; Ploeger, F.; Randel, W.J. Evaluating the advective Brewer-Dobson circulation in three reanalyses for the period 1979–2012. J. Geophys. Res. 2015, 120, 7534–7554. [Google Scholar] [CrossRef]
- Iwasaki, T.; Hamada, H.; Miyazaki, K. Comparisons of Brewer-Dobson circulations diagnosed from reanalyses. J. Meteorol. Soc. Jpn. 2009, 87, 997–1006. [Google Scholar] [CrossRef]
- Simmons, A.J.; Poli, P.; Dee, D.P.; Berrisford, P.; Hersbach, H.; Kobayashi, S.; Peubey, C. Estimating low-frequency variability and trends in atmospheric temperature using ERA-Interim. Q. J. Roy. Meteorol. Soc. 2014, 140, 329–353. [Google Scholar] [CrossRef]
- Lane, J.; Kasparis, T.; Michaelides, S.; Metzger, P. A phenomenological relationship between vertical air motion and disdrometer derived Ab coefficients. Atmos. Res. 2018, 208, 94–105. [Google Scholar] [CrossRef]
- Kim, D.-K.; Song, C.-K. Characteristics of vertical velocities estimated from drop size and fall velocity spectra of a Parsivel disdrometer. Atmos. Meas. Tech. 2018, 11, 3851–3860. [Google Scholar] [CrossRef]
- Joss, J.; Waldvogel, A. Ein Spektrograph für Niederschlagstropfen mit automatischer Auswertung. Pure Appl. Geophys. 1967, 68, 240–246. [Google Scholar] [CrossRef]
- Joss, J.; Waldvogel, A. Raindrop size distribution and sampling size errors. J. Atmos. Sci. 1969, 26, 566–569. [Google Scholar] [CrossRef]
- Wang, J.; Bian, J.; Brown, W.O.; Cole, H.; Grubišić, V.; Young, K. Vertical air motion from T-REX radiosonde and dropsonde data. J. Atmos. Ocean. Tech. 2009, 26, 928–942. [Google Scholar] [CrossRef]
- Sóbester, A.; Castro, I.P.; Czerski, H.; Zapponi, N. Notes on meteorological balloon mission planning. In Proceedings of the AIAA Balloon Systems (BAL) Conference, Daytona Beach, FL, USA, 25–28 March 2013. [Google Scholar]
- Berrisford, P.; Dee, D.P.; Poli, P.; Brugge, R.; Fielding, K.; Fuentes, M.; Kållberg, P.W.; Kobayashi, S.; Uppala, S.; Simmons, A. The ERA-Interim archive Version 2.0. ERA Report Series 1. 2011. Available online: http://www.ecmwf.int/en/elibrary/8174-era-interim-archive-version-20 (accessed on 4 December 2018).
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Lackmann, G.M. Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting; American Meteorological Society: Boston, MA, USA, 2011. [Google Scholar]
- Moritz, H. Geodetic Reference System 1980. Bulletin Geodesique. 1980, 54, 395–405. [Google Scholar] [CrossRef]
- Tsen, A. Determination of Geoidal Height Difference Using Ring Integration Method; Technical Report No. 158; University of New Brunswick: Fredericton, NB, Canada, 1991. [Google Scholar]
- Tokay, A.; Kruger, A.; Krajewski, W.F. Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteorol. 2001, 40, 2083–2097. [Google Scholar] [CrossRef]
- Marshall, J.S.; Palmer, W.M.K. The distribution of raindrops with size. J. Meteorol. 1948, 5, 165–166. [Google Scholar] [CrossRef]
- Lane, J.; Kasparis, T.; Jones, L. A 3D drop-size distribution model based on the convolution of raindrops at terminal velocity. Int. J. Remote Sens. 2002, 23, 3115–3121. [Google Scholar] [CrossRef]
- Kuligowski, R.J. An overview of National Weather Service Quantitative Precipitation Estimates. Available online: http://www.nws.noaa.gov/im/pub/tdl97-4.pdf (accessed on 20 December 2018).
- Montmerle, T.; Faccani, C. Mesoscale Assimilation of Radial Velocities from Doppler radars in a preoperational framework. Mon. Wea. Rev. 2009, 137, 1939–1953. [Google Scholar] [CrossRef]
- Lanzante, J.R.; Klein, S.A.; Seidel, D.J. Temporal homogenization of monthly radiosonde temperature data. Part I: Methodology. J. Climate 2003, 16, 224–240. [Google Scholar] [CrossRef]
- Montmerle, T. Statement of Guidance for High-Resolution Numerical Weather Prediction (NWP). 2018. Available online: https://www.wmo.int/pages/prog/www/OSY/SOG/SoG-HighRes-NWP.pdf (accessed on 20 December 2018).
- Aoki, M.; Iwai, H.; Nakagawa, K.; Ishii, S.; Mizutani, K. Measurements of Rainfall Velocity and Raindrop Size Distribution Using Coherent Doppler Lidar. J. Atmos. Oceanic Technol. 2016, 33, 1949–1966. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. J. Meteorol. Soc. Jpn. 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Haimberger, L. Homogenization of Radiosonde Temperature Time Series Using ERA-40 Analysis Feedback Information. ECMWF ERA-40 Project Rep. Series 23. 2005. Available online: https://www.ecmwf.int/node/9738 (accessed on 29 December 2018).
Date | A | b | ||
---|---|---|---|---|
1 | 29 May 2011 | 248 | 1.36 | −0.575 |
2 | 23 September 2011 | 432 | 1.43 | 2.285 |
3 | 10 August 2011 | 71 | 1.2 | −0.87 |
4 | 27 January 2012 | 354 | 1.4 | 2.75 |
5 | 24 October 2012 | 446 | 1.43 | 1.5 |
6 | 17 April 2013 | 280 | 1.38 | −0.38 |
7 | 10 May 2013 | 584 | 1.47 | 0.58 |
8 | 6 June 2013 | 221 | 1.3 | −2.7 |
9 | 18 October 2013 | 373 | 1.42 | 2.7 |
10 | 12 June2014 | 1391 | 1.64 | −1.0 |
11 | 5 July 2014 | 1765 | 1.63 | −0.75 |
A | b | |
---|---|---|
3 | 495 | 1.24 |
0 | 220 | 1.33 |
−4 | 147 | 1.35 |
Date | Time (UTC) | (m s−1) | (m) | (h) | |
---|---|---|---|---|---|
1 | 29May 2011 | 05:00 (NA) 11:00 | 0.60 −0.47 | - 1.40 | - 0.43 |
2 | 23 September 2011 | 05:00 11:00 | 0.38 0.59 | 1.35 1.35 | 0.21 0.20 |
3 | 10 August 2011 | 05:00 11:00 | −0.52 −1.24 | 1.42 1.45 | 0.38 0.45 |
4 | 27 January 2012 | 05:00 11:00 | 2.72 −0.43 | 1.18 1.36 | < 0 0.38 |
5 | 24 October 2012 | 05:00 11:00 | 1.19 1.41 | 1.30 1.30 | 0.10 0.07 |
6 | 17 April 2013 | 05:00 11:00 | 0.87 −0.70 | 1.30 1.38 | 0.07 0.40 |
7 | 10 May 2013 | 05:00 11:00 (NA) | 0.69 0.43 | 1.31 - | 0.01 - |
8 | 6 June 2013 | 05:00 (NA) 11:00 (NA) | −2.71 −2.79 | - - | - - |
9 | 18 October 2013 | 05:00 11:00 | 2.75 −1.16 | 1.20 1.40 | < 0 0.48 |
10 | 12 June 2014 | 05:00 11:00 | −0.30 −0.88 | 1.37 1.41 | 0.32 0.45 |
11 | 5 July 2014 | 05:00 (NA) 11:00 (NA) | −0.24 0.67 | - - | - - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michaelides, S.; Lane, J.; Kasparis, T. Effect of Vertical Air Motion on Disdrometer Derived Z-R Coefficients. Atmosphere 2019, 10, 77. https://doi.org/10.3390/atmos10020077
Michaelides S, Lane J, Kasparis T. Effect of Vertical Air Motion on Disdrometer Derived Z-R Coefficients. Atmosphere. 2019; 10(2):77. https://doi.org/10.3390/atmos10020077
Chicago/Turabian StyleMichaelides, Silas, John Lane, and Takis Kasparis. 2019. "Effect of Vertical Air Motion on Disdrometer Derived Z-R Coefficients" Atmosphere 10, no. 2: 77. https://doi.org/10.3390/atmos10020077
APA StyleMichaelides, S., Lane, J., & Kasparis, T. (2019). Effect of Vertical Air Motion on Disdrometer Derived Z-R Coefficients. Atmosphere, 10(2), 77. https://doi.org/10.3390/atmos10020077