Projecting the Most Likely Annual Urban Heat Extremes in the Central United States
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Comparison of Observed and RDC Forecast Annual Heat Extremes
2.3. EMOS Method for Defining Most Likely Future Heat Extremes
3. Results
3.1. RDC Annual Peak Temperature Forecasts Compared to Observations
3.2. Constructing a Reduced-Order EMOS Model for Des Moines and Austin
3.3. Determining Most Likely Range of Future Annual Peak Temperatures
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Formulation of the Reduced-Order EMOS Model
References
- Koppe, C.; Kovats, S.; Jendritzky, G.; Menne, B. Heat-Waves: Risks and Responses. In WHO Report: Health and Global Environmental Change Series; No. 2; WHO: Geneva, Switzerland, 2004; p. 123. ISBN 92-890-1094-0. [Google Scholar]
- Harmon, K. How Does a Heat Wave Affect the Human Body? Scientific American, 2010. Available online: https://www.scientificamerican.com/article/heat-wave-health (accessed on 19 April 2018).
- U.S. Department of Energy. Energy Information Administration Retail Use of Electricity, Annual, Independent Statistics & Analysis. 2017. Available online: https://www.eia.gov/electricity/data.php (accessed on 20 March 2018).
- U.S. Department of Energy. Energy Information Administration, Residential Consumption Survey. Independent Statistics & Analysis. 2015. Available online: https://www.eia.gov/consumption/residential/data/2015/hc/php/hc7.6.php (accessed on 20 March 2018).
- Añel, J.A.; Fernández-González, M.; Labandeira, X.; López-Otero, X.; de la Torre, L. Impact of cold waves and heat waves on the energy production sector. Atmosphere 2017, 8, 209. [Google Scholar] [CrossRef]
- Rademaekers, K.; van der Laan, J.; Boeve, S.; Lise, W.; van Hienen, J.; Metz, B.; Haigh, P.; de Groot, K.; Dijkstra, S.; Jansen, J. Investment Needs for Future Adaptation Measures in EU Nuclear Power Plants and Other Electricity Generation Technologies due to Effects of Climate Change; Technical Report; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Global Climate Change Impacts in the United States. United States Global Change Research Program; Thomas, R.K., Melillo, J.M., Peterson, T.C., Eds.; Cambridge University Press: New York, NY, USA, 2009.
- U.S. Global Change Research Program. Climate Science Special Report: Fourth National Climate Assessment; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Steward, B.C., Maycock., T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017; p. 470. [CrossRef]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G.; et al. Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Pachauri, R.K.; Meyer, L.A. (Eds.) Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Pryor, S.C.; Scavia, D.; Downer, C.; Gaden, M.; Iverson, L.; Nordstrom, R. Climate Change Impacts in the United States: The Third National Climate Assessment. In National Climate Assessment Report; Melillo, J.M., Richmond, T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014. [Google Scholar]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. 1967, 7, 769–779. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the Urban Heat Island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Quattrochi, D.A.; Luvall, J.C.; Rickman, D.L.; Estes, M.G.; Laymon, C.A.; Howell, B.F. A decision support information system for urban landscape management using thermal infrared data: Decision support systems. Photogramm. Eng. Remote Sens. 2000, 66, 1195–1207. [Google Scholar]
- Pan, Z.; Arritt, R.W.; Takle, E.S.; Gutowski, W.J., Jr.; Anderson, C.J.; Segal, M. Altered hydrologic feedback in a warming climate introduces a “warming hole”. Geophys. Res. Lett. 2004, 31, L17109. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Branstator, G. Mechanisms Contributing to the Warming Hole and the Consequent U.S. East–West Differential of Heat Extremes. J. Clim. 2012, 25, 6394–6408. [Google Scholar] [CrossRef]
- Mascioli, N.R.; Previdi, M.; Fiore, A.M.; Ting, M.F. Timing and seasonality of the United States ‘warming hole’. Environ. Res. Lett. 2017, 12, 034008. [Google Scholar] [CrossRef]
- Mueller, N.D.; Butler, E.E.; McKinnon, K.A.; Rhines, A.; Tingley, M.; Holbrook, N.M.; Huybers, P. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Chang. 2015, 6, 317–324. [Google Scholar] [CrossRef]
- Hurrell, J.; Visbeck, M.; Pirani, A. WCRP Coupled Model Intercomparison Project—Phase 5: Special Issue of the CLIVAR Exchanges Newsletter; No. 56, 15, No. 2; CLIVAR Exchanges: Qingdao, China, 2011. [Google Scholar]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Maurer, E.P.; Brekke, L.; Pruitt, T.; Duffy, P.B. Fine-resolution climate projections enhance regional climate change impact studies. Eos Trans. 2007, 88, 504. [Google Scholar] [CrossRef]
- Brekke, L.; Thrasher, B.L.; Maurer, E.P.; Pruitt, T. Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Downscaled CMIP5 Climate Projections, Comparison with Preceding Information, and Summary of User Needs; The U.S. Department of the Interior, Bureau of Reclamation, Technical Services Center: Denver, CO, USA, 2013; p. 47.
- Gneiting, T.; Raftery, A.E.; Westveld, A.H.; Goldman, T. Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather Rev. 2005, 133, 1098–1118. [Google Scholar] [CrossRef]
- United States Census Bureau. Annual Estimates of the Resident Population for Incorporated Places of 50,000 or More, Ranked by July 1, 2018 Population: April 1, 2010 to July 1, 2018. Available online: https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk (accessed on 8 November 2019).
- United States Census Bureau. 2016 U.S. Gazetteer Files. Available online: https://www2.census.gov/geo/docs/mapsdata/data/gazetteer/2016_Gazetteer/2016_Gaz_tracts_national.zip (accessed on 8 November 2019).
- U.S. Climate Data. Available online: http://usclimatedata.com (accessed on 8 November 2019).
- Doyle, A. Global Warming Set to Exceed 1.5 °C, Slow Growth—U.N. Draft. Environment. Available online: https://www.reuters.com/article/us-climatechange-report-exclusive/exclusive-global-warming-set-to-exceed-1-5c-slow-growth-u-n-draft-idUSKBN1JA1HD (accessed on 24 August 2018).
- Iowa State University, Iowa Environmental Mesonet: ASOS Network Historical Data. Available online: https://mesonet.agron.iastate.edu/ASOS (accessed on 20 September 2017).
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Thorarinsdottir, T.L.; Gneiting, T. Probabilistic forecasts of wind speed: Ensemble model output statistics by using heteroscedastic censored regression. J. R. Stat. Soc. 2010, 173, 371–388. [Google Scholar] [CrossRef]
- Friederichs, P.; Thorarinsdottir, T.L. Forecast verification for extreme value distributions with an application to probabilistic peak wind prediction. Environmetrics 2012, 23, 579–594. [Google Scholar] [CrossRef]
- Baran, S.; Lerch, S. Log-normal distribution based Ensemble Model Output Statistics models for probabilistic wind-speed forecasting. Q. J. R. Meteorol. Soc. 2015, 141, 2289–2299. [Google Scholar] [CrossRef]
- Baran, S.; Lerch, S. Mixture EMOS model for calibrating ensemble forecasts of wind speed. Environmetrics 2016, 27, 116–130. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2009; p. 737. [Google Scholar]
- Hoerl, A.; Kennard, R. Ridge regression. Encycl. Stat. Sci. 1988, 8, 129–136. [Google Scholar]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Goeman, J.; Meijer, R.; Chaturvedi, N. L1 and L2 Penalized Regression Models: Documentation for the Penalized Package for the Statistical Environment R. Available online: https://cran.r-project.org/web/packages/penalized/vignettes/penalized.pdf (accessed on 15 November 2018).
- Byon, E.; Shrivastava, A.K.; Ding, Y. A classification procedure for highly imbalanced class sizes. IIE Trans. 2010, 42, 288–303. [Google Scholar] [CrossRef]
- Kusaka, H.; Kondo, H.; Kikegawa, Y.; Kimura, F. A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound. Layer Meteorol. 2001, 101, 329–358. [Google Scholar] [CrossRef]
- Kusaka, H.; Kimura, F. Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteorol. Soc. Jpn. 2004, 82, 67–80. [Google Scholar] [CrossRef]
- Lee, G.; Byon, E.; Ntaimo, L.; Ding, Y. Bayesian spline method for assessing extreme loads on wind turbines. Ann. Appl. Stat. 2013, 7, 2034–2061. [Google Scholar] [CrossRef]
- Khosravi, A.; Nahavandi, S.; Creighton, D.; Atiya, A.F. Lower upper bound estimation method for construction of neural network-based prediction intervals. IEEE Trans. Neural Netw. 2011, 22, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, D.L.; Solomatine, D.P. Machine learning approaches for estimation of prediction interval for the model output. Neural Netw. 2006, 19, 225–235. [Google Scholar] [CrossRef]
Model Acronym | Model | Institute |
---|---|---|
ACCESS1.0 | Australian Community Climate and Earth-System Simulator, v1.0 | Bureau of Meteorology, Australia |
BCC-CSM1-1.1 | Beijing Climate Center, Climate System Model, v1.1 | China Meteorological Administration, PRC |
CanEMS2.1 | Canadian Earth System Model, gen. 2 | Canadian Centre for Climate Modeling and Analysis, Canada |
CCSM4.1,.2 | Community Climate System Model, v4 | National Center for Atmospheric Research (NCAR), USA |
CESM1-BGC.1 | Community Earth System Model, Carbon Cycle, v1 | National Science Foundation-Department of Energy-NCAR, USA |
CNRM-CM5.1 | Centre National de Recherches Météorologiques Coupled Global Climate Model, v5 | Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, France |
CSIRO-MK3.6 | Commonwealth Scientific and Industrial Research Org. (CSIRO) Mark, v3.6 | Queensland Climate Change Centre of Excellence, Australia |
GFDL-ESM.1 | Geophysical Fluid Dynamics Laboratory Earth System Model, v1 | National Oceanic and Atmospheric Administration, USA |
INMCM4.1 | Institute of Numerical Mathematics (INM) Coupled Model, v4.1 | INM, Russia |
IPSL-CM5A-LR | L’Institut Pierre-Simon Laplace (IPSL) Coupled Model, v5A, low resolution | IPSL, France |
MIROC5 | Model for Interdisciplinary Research on Climate, v5 | AORI-NIES-JAMSTEC, Japan |
MPI-ESM-LR | Max Planck Institute (MPI) Earth System Mode (ESM)l, low resolution | Max Planck Institute for Meteorology (MPI_M), Germany |
MPI-ESM-MR | MPI-ESM, medium-resolution | MPI-M, Germany |
MPI-CGCM3.1 | MPI Coupled General Circulation Model, v3.1 | MPI-M, Germany |
NorESM1-M.1 | Norwegian Earth System Model | Norwegian Climate Center, Norway |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahn, D.E.; Gallus, W.A., Jr.; Nguyen, P.T.T.; Pan, Q.; Cetin, K.; Byon, E.; Manuel, L.; Zhou, Y.; Jahani, E. Projecting the Most Likely Annual Urban Heat Extremes in the Central United States. Atmosphere 2019, 10, 727. https://doi.org/10.3390/atmos10120727
Jahn DE, Gallus WA Jr., Nguyen PTT, Pan Q, Cetin K, Byon E, Manuel L, Zhou Y, Jahani E. Projecting the Most Likely Annual Urban Heat Extremes in the Central United States. Atmosphere. 2019; 10(12):727. https://doi.org/10.3390/atmos10120727
Chicago/Turabian StyleJahn, David E., William A. Gallus, Jr., Phong T. T. Nguyen, Qiyun Pan, Kristen Cetin, Eunshin Byon, Lance Manuel, Yuyu Zhou, and Elham Jahani. 2019. "Projecting the Most Likely Annual Urban Heat Extremes in the Central United States" Atmosphere 10, no. 12: 727. https://doi.org/10.3390/atmos10120727
APA StyleJahn, D. E., Gallus, W. A., Jr., Nguyen, P. T. T., Pan, Q., Cetin, K., Byon, E., Manuel, L., Zhou, Y., & Jahani, E. (2019). Projecting the Most Likely Annual Urban Heat Extremes in the Central United States. Atmosphere, 10(12), 727. https://doi.org/10.3390/atmos10120727