Assessing the Impact of Ozone and Particulate Matter on Mortality Rate from Respiratory Disease in Seoul, Korea
Abstract
:1. Introduction
2. Research Methods
2.1. Analytical Data
2.2. Decision Tree Model
3. Status of Air Pollution, Temperature, and the Number of Deaths Caused by Air Pollutants
3.1. Air Pollution and Temperature
3.2. Number of Deaths Caused by Respiratory Disease
4. Results and Discussion
4.1. Linkage of Air Pollution and Temperature with Mortality from Respiratory Disease
4.2. Factors that Impact the Number of Deaths Caused by Respiratory Disease
4.2.1. Influence of 1-h Maximum Pollutant Concentrations on the Number of Deaths from Respiratory Disease
4.2.2. Influence of 24-h Average Pollutant Concentrations on the Number of Deaths from Respiratory Disease
5. Conclusions
Conflicts of Interest
Appendix A
References
- IPCC. Chapter 11. Human Health: Impacts, Adaptation, and Co-Benefits. In AR5 Climate Change 2014: Impacts, Adaptation, and Vulnerability; Working Group II contribution to the IPCC’s Fifth Assessment Repport; Intergovernmental Panel on Climage Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Gao, F.; Calatayud, V.; García-Breijo, F.; Reig-Armiñana, J.; Feng, Z. Effects of elevated ozone on physiological, anatomical and ultrastructural characteristics of four common urban tree species in China. Ecol. Indic. 2016, 67, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; He, X.; Chen, W. Effects of elevated ozone on photosynthetic CO2 exchange and chlorophyll a fluorescence in leaves of quercus mongolica grown in urban area. Bull. Environ. Contam. Toxicol. 2009, 82, 478–481. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-L.; Lin, C.-H.; Lai, C.-H.; Lai, H.-C.; Young, C.-Y. Effects of Local Circulations, Turbulent Internal Boundary Layers, and Elevated Industrial Plumes on Coastal Ozone Pollution in the Downwind Kaohsiung Urban-Industrial Complex. Terr. Atmos. Ocean. Sci. 2010, 21, 343–357. [Google Scholar] [CrossRef]
- Bell, M.L.; McDermott, A.; Zeger, S.L.; Samet, J.M.; Dominici, F. Ozone and short-term mortality in 95 US urban communities, 1987–2000. JAMA 2004, 292, 2372–2378. [Google Scholar] [CrossRef]
- Reid, C.E.; Snowden, J.M.; Kontgis, C.; Tager, I.B. The Role of Ambient Ozone in Epidemiologic Studies of Heat-Related Mortality. Environ. Health Perspect. 2012, 120, 1627–1630. [Google Scholar] [CrossRef] [PubMed]
- Stafoggia, M.; Forastiere, F.; Faustini, A.; Biggeri, A.; Bisanti, L.; Cadum, E.; Cernigliaro, A.; Mallone, S.; Pandolfi, P.; Serinelli, M.; et al. Susceptibility factors to ozone-related mortality: A population-based case-crossover analysis. Am. J. Respir. Crit. Care Med. 2010, 182, 376–384. [Google Scholar] [CrossRef]
- Seven Million Premature Deaths Annually Linked to Air Pollution. Available online: https://www.who.int/mediacentre/news/releases/2014/air-pollution/en/ (accessed on 2 October 2019).
- Hong, Y.-C.; Lee, J.-T.; Kim, H.; Kwon, H.-J. Air pollution: A new risk factor in ischemic stroke mortality. Stroke 2002, 33, 2165–2169. [Google Scholar] [CrossRef]
- Jackson, J.E.; Yost, M.G.; Karr, C.; Fitzpatrick, C.; Lamb, B.K.; Chung, S.H.; Chen, J.; Avise, J.; Rosenblatt, R.A.; Fenske, R.A. Public health impacts of climate change in Washington State: Projected mortality risks due to heat events and air pollution. Clim. Chang. 2010, 102, 159–186. [Google Scholar] [CrossRef]
- Son, J.-Y.; Bell, M.L.; Lee, J.-T. Individual exposure to air pollution and lung function in Korea: Spatial analysis using multiple exposure approaches. Environ. Res. 2010, 110, 739–749. [Google Scholar] [CrossRef]
- Forns, J.; Dadvand, P.; Esnaola, M.; Alvarez-Pedrerol, M.; López-Vicente, M.; Garcia-Esteban, R.; Cirach, M.; Basagaña, X.; Guxens, M.; Sunyer, J. Longitudinal association between air pollution exposure at school and cognitive development in school children over a period of 3.5 years. Environ. Res. 2017, 159, 416–421. [Google Scholar] [CrossRef]
- Ljungman, P.L.; Li, W.; Rice, M.B.; Wilker, E.H.; Schwartz, J.; Gold, D.R.; Koutrakis, P.; Benjamin, E.J.; Vasan, R.S.; Mitchell, G.F.; et al. Long- and short-term air pollution exposure and measures of arterial stiffness in the Framingham Heart Study. Environ. Int. 2018, 121, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Myung, W.; Jeong, B.-H.; Choi, H.; Jhun, B.W.; Kim, H. Short- and long-term exposure to ambient air pollution and circulating biomarkers of inflammation in non-smokers: A hospital-based cohort study in South Korea. Environ. Int. 2018, 119, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees (Wadsworth Statistics/Probability), 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 1984. [Google Scholar]
- Air Quality Data. Available online: https://www.airkorea.or.kr/eng (accessed on 2 October 2019).
- Synoptic Meteorological Data. Available online: https://data.kma.go.kr (accessed on 2 October 2019).
- Microdata Integrated Service. Available online: https://mdis.kostat.go.kr (accessed on 2 October 2019).
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Science and Business Media LLC: New York, NY, USA, 2009. [Google Scholar]
- Venkatasubramaniam, A.; Wolfson, J.; Mitchell, N.; Barnes, T.; Jaka, M.; French, S. Decision trees in epidemiological research. Emerg. Themes Epidemiol. 2017, 14, 11. [Google Scholar] [CrossRef]
- Wolfson, J.; Venkatasubramaniam, A. Branching Out: Use of Decision Trees in Epidemiology. Curr. Epidemiol. Rep. 2018, 5, 221–229. [Google Scholar] [CrossRef]
- Bae, J.-M. Clinical Decision Analysis using Decision Tree. Epidemiol. Health 2014, 36, 201425. [Google Scholar] [CrossRef] [PubMed]
- Le Ray, I.; Lee, B.; Wikman, A.; Reilly, M. Evaluation of a decision tree for efficient antenatal red blood cell antibody screening. Epidemiology 2018, 29, 453–457. [Google Scholar] [CrossRef]
- Chu, H.-J.; Lin, C.-Y.; Liau, C.-J.; Kuo, Y.-M. Identifying controlling factors of ground-level ozone levels over southwestern Taiwan using a decision tree. Atmos. Environ. 2012, 60, 142–152. [Google Scholar] [CrossRef]
- Gardner, M.; Dorling, S. Statistical surface ozone models: An improved methodology to account for non-linear behaviour. Atmos. Environ. 2000, 34, 21–34. [Google Scholar] [CrossRef]
- Park, S.-K. Assessing Factors Linked with Ozone Exceedances in Seoul, Korea through a Decision Tree Algorithm. J. Environ. Sci. Int. 2016, 25, 191–216. [Google Scholar] [CrossRef]
- Baranski, L.; Jankowiak, L.; Rozemski, K. Seasonal changes of the spatial distribution of ozone content over Central Europe from TOVS/NOAA satellite data. Adv. Space Res. 1993, 13, 325–328. [Google Scholar] [CrossRef]
- Roy, S.; Beig, G.; Jacob, D. Seasonal distribution of ozone and its precursors over the tropical Indian region using regional chemistry-transport model. J. Geophys. Res. Space Phys. 2008, 113, 21307. [Google Scholar] [CrossRef]
- Scheel, H.E.; Areskoug, H.; Geiss, H.; Gomiscek, B.; Granby, K.; Haszpra, L.; Klasinc, L.; Kley, D.; Laurila, T.; Lindskog, A.; et al. On the Spatial Distribution and Seasonal Variation of Lower-Troposphere Ozone over Europe. J. Atmos. Chem. 1997, 28, 11–28. [Google Scholar] [CrossRef]
- Kim, S.-W.; Yoon, S.-C.; Won, J.-G.; Choi, S.-C. Ground-based remote sensing measurements of aerosol and ozone in an urban area: A case study of mixing height evolution and its effect on ground-level ozone concentrations. Atmos. Environ. 2007, 41, 7069–7081. [Google Scholar] [CrossRef]
- De Leon, S.F.; Thurston, G.D.; Ito, K. Contribution of Respiratory Disease to Nonrespiratory Mortality Associations with Air Pollution. Am. J. Respir. Crit. Care Med. 2003, 167, 1117–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabass, A.; Talbott, E.O.; Venkat, A.; Rager, J.; Marsh, G.M.; Sharma, R.K.; Holguin, F. Association of exposure to particulate matter (PM2.5) air pollution and biomarkers of cardiovascular disease risk in adult NHANES participants (2001–2008). Int. J. Hyg. Environ. Health 2016, 219, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.; Patil, R.S. Prediction of air pollution concentration using an in situ real time mixing height model. Atmos. Environ. 2006, 40, 3816–3822. [Google Scholar] [CrossRef]
- Han, Y.-J.; Holsen, T.M.; Hopke, P.K.; Cheong, J.-P.; Kim, H.; Yi, S.-M. Identification of source locations for atmospheric dry deposition of heavy metals during yellow-sand events in Seoul, Korea in 1998 using hybrid receptor models. Atmos. Environ. 2004, 38, 5353–5361. [Google Scholar] [CrossRef]
- Gómez-Acebo, I.; Llorca, J.; Dierssen, T. Cold-related mortality due to cardiovascular diseases, respiratory diseases and cancer: A case-crossover study. Public Health 2012, 127, 252–258. [Google Scholar] [CrossRef]
- Kim, D.W.; Deo, R.C.; Chung, J.H.; Lee, J.S. Projection of heat wave mortality related to climate change in Korea. Nat. Hazards 2016, 80, 623–637. [Google Scholar] [CrossRef]
- Hien, P.; Loc, P.; Dao, N. Air pollution episodes associated with East Asian winter monsoons. Sci. Total. Environ. 2011, 409, 5063–5068. [Google Scholar] [CrossRef]
- Park, S.K. Assessing the impact of air pollution on mortality rate from cardiovascular disease in Seoul, Korea. Environ. Eng. Res. 2018, 23, 430–441. [Google Scholar] [CrossRef]
- Kim, K.; Macdonald, A.M.; Park, K.; Kim, H.-C.; Yoon, H.-I.; Yang, E.J.; Jung, J.; Kim, J.-H.; Lee, J.; Choi, T.; et al. Spatial and temporal variabilities of spring Asian dust events and their impacts on chlorophyll-a concentrations in the western North Pacific Ocean. Geophys. Res. Lett. 2017, 44, 1474–1482. [Google Scholar]
- Park, S.-U.; Choe, A.; Park, M.-S. A simulation of Asian dust events observed from 20 to 29 December 2009 in Korea by using ADAM2. Asia-Pacific J. Atmos. Sci. 2013, 49, 95–109. [Google Scholar] [CrossRef]
- Dong, G.-H.; Zhang, P.; Sun, B.; Zhang, L.; Chen, X.; Ma, N.; Yu, F.; Guo, H.; Huang, H.; Lee, Y.L.; et al. Long-Term Exposure to Ambient Air Pollution and Respiratory Disease Mortality in Shenyang, China: A 12-Year Population-Based Retrospective Cohort Study. Respiration 2012, 84, 360–368. [Google Scholar] [CrossRef]
- Brook, J.R.; Yung, W.T.; Dales, R.E.; Burnett, R.T.; Krewski, D. Association between Ozone and Hospitalization for Respiratory Diseases in 16 Canadian Cities. Environ. Res. 1997, 72, 24–31. [Google Scholar]
- Lee, W.; Choi, H.M.; Kim, D.; Honda, Y.; Guo, Y.L.; Kim, H. Temporal changes in morality attributed to heat extremes for 57 cities in Northeast Asia. Sci. Total Environ. 2018, 616, 703–709. [Google Scholar] [CrossRef]
- Camacho, J.; Ferrer, A.; Páez, J.C. Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Practical aspects. Chemom. Intell. Lab. Syst. 2014, 131, 37–50. [Google Scholar] [CrossRef]
- Grimm, K.J.; Mazza, G.L.; Davoudzadeh, P. Model Selection in Finite Mixture Models: A k-Fold Cross-Validation Approach. Struct. Equ. Model. 2017, 24, 246–256. [Google Scholar] [CrossRef]
- Lim, C.; Jang, J.; Lee, I.; Kim, G.; Lee, S.M.; Kim, Y.; Kim, H.; Kaufman, A.J. Sulfur isotope and chemical compositions of the wet precipitation in two major urban areas, Seoul and Busan, Korea. J. Asian Earth Sci. 2014, 79, 415–425. [Google Scholar] [CrossRef]
- Wang, B.; Ding, Q.; Jhun, J.G. Trends in Seoul (1778–2004) summer precipitation. Geophys. Res. Lett. 2006, 33, L15803. [Google Scholar] [CrossRef]
- Zanobetti, A.; Schwartz, J.; Samoli, E.; Gryparis, A.; Touloumi, G.; Peacock, J.; Anderson, R.H.; Le Tertre, A.; Bobros, J.; Celko, M.; et al. The temporal pattern of respiratory and heart disease mortality in response to air pollution. Environ. Health Perspect. 2003, 111, 1188–1193. [Google Scholar] [CrossRef] [PubMed]
- Jerrett, M.; Burnett, R.T.; Brook, J.; Kanaroglou, P.; Giovis, C.; Finkelstein, N.; Hutchison, B. Do socioeconomic characteristics modify the short term association between air pollution and mortality? Evidence from a zonal time series in Hamilton, Canada. J. Epidemiol. Community Health 2004, 58, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mean | Standard Deviation | Median | Maximum | Minimum |
---|---|---|---|---|
7.6 | 3.5 | 7 | 23 | 1 |
Model is Constructed Using | Difference | ||
---|---|---|---|
Month | 1-h Maximum Pollutant Concentration (A) | 24-h Average Pollutant Concentration (B) | (A)–(B) |
January | 30.6% (33.8%) 1 | 28.8% (32.4%) 1 | 1.8% |
February | 32.9% (31.4%) 1 | 29.1% (31.4%) 1 | 3.8% |
March | 28.7% (29.8%) 1 | 25.1% (22.2%) 1 | 3.6% |
April | 27.6% (31.6%) 1 | 26.5% (24.5%) 1 | 1.1% |
May | 28.0% (26.9%) 1 | 29.9% (28.2%) 1 | −1.9% |
June | 32.2% (29.4%) 1 | 33.2% (32.4%) 1 | −1.0% |
July | 38.0% (40.0%) 1 | 37.9% (42.2%) 1 | 0.1% |
August | 42.0% (41.0%) 1 | 42.0% (41.0%) 1 | 0.0% |
September | 38.8% (41.1%) 1 | 36.3% (40.8%) 1 | 2.5% |
October | 36.0% (36.3%) 1 | 34.1% (35.6%) 1 | 1.9% |
November | 34.0% (35.2%) 1 | 29.5% (34.0%) 1 | 4.5% |
December | 30.5% (33.1%) 1 | 28.4% (32.2%) 1 | 2.1% |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.K. Assessing the Impact of Ozone and Particulate Matter on Mortality Rate from Respiratory Disease in Seoul, Korea. Atmosphere 2019, 10, 685. https://doi.org/10.3390/atmos10110685
Park SK. Assessing the Impact of Ozone and Particulate Matter on Mortality Rate from Respiratory Disease in Seoul, Korea. Atmosphere. 2019; 10(11):685. https://doi.org/10.3390/atmos10110685
Chicago/Turabian StylePark, Sun Kyoung. 2019. "Assessing the Impact of Ozone and Particulate Matter on Mortality Rate from Respiratory Disease in Seoul, Korea" Atmosphere 10, no. 11: 685. https://doi.org/10.3390/atmos10110685
APA StylePark, S. K. (2019). Assessing the Impact of Ozone and Particulate Matter on Mortality Rate from Respiratory Disease in Seoul, Korea. Atmosphere, 10(11), 685. https://doi.org/10.3390/atmos10110685