Long-Term Trends in PAH Concentrations and Sources at Rural Background Site in Central Europe
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental
2.2. PMF Modelling
2.3. Wind Analysis
2.4. Back Trajectory Analysis
2.5. Trends Calculation
2.6. Degree-Days Calculation
2.7. Diagnostic Ratios
3. Results and Discussion
3.1. Concentrations of Monitored PAHs
3.2. Trend Analysis
3.3. Annual Cycle of PAH Concentrations
3.4. Identification of PAH Sources Using PMF
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Tao, S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos. Environ. 2009, 43, 812–819. [Google Scholar] [CrossRef]
- Masiol, M.; Formenton, G.; Pasqualetto, A.; Pavoni, B. Seasonal trends and spatial variations of PM10-bounded polycyclic aromatic hydrocarbons in Veneto Region, Northeast Italy. Atmos. Environ. 2013, 79, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Shafy, H.I.; Mansour, M.S. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Jahan, S.A.; Kabir, E.; Brown, R.J. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef]
- Edwards, S.C.; Jedrychowski, W.; Butscher, M.; Camann, D.; Kieltyka, A.; Mroz, E.; Perera, F. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children′s intelligence at 5 years of age in a prospective cohort study in Poland. Environ. Health Perspect. 2010, 118, 1326–1331. [Google Scholar] [CrossRef]
- Perera, F.P.; Tang, D.; Wang, S.; Vishnevetsky, J.; Zhang, B.; Diaz, D.; Rauh, V. Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6–7 years. Environ. Health Perspect. 2012, 120, 921–926. [Google Scholar] [CrossRef]
- Šrám, R.J.; Dostal, M.; Libalova, H.; Rossner, P.; Rossnerova, A.; Svecova, V.; Bartonova, A. The European Hot Spot of B [a] P and PM 2.5 Exposure—The Ostrava Region, Czech Republic: Health Research Results. ISRN Public Health 2013, 2013. [Google Scholar] [CrossRef]
- Pulkrabova, J.; Stupak, M.; Svarcova, A.; Rossner, P.; Rossnerova, A.; Ambroz, A.; Hajslova, J. Relationship between atmospheric pollution in the residential area and concentrations of polycyclic aromatic hydrocarbons (PAHs) in human breast milk. Sci. Total Environ. 2016, 562, 640–647. [Google Scholar] [CrossRef]
- Sram, R.J.; Veleminsky, J.M.; Veleminsky, S.M.; Stejskalova, J. The impact of air pollution to central nervous system in children and adults. Neuro Endocrinol. Lett. 2017, 38, 389–396. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monographs on the evaluation of carcinogenic risks to humans. 2010, 92, 1. [Google Scholar]
- Rogula-Kozłowska, W.; Kozielska, B.; Klejnowski, K. Concentration, origin and health hazard from fine particle-bound PAH at three characteristic sites in Southern Poland. Bull. Environ. Contam. Toxicol. 2013, 91, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, C.B.B.; Horálek, J.; De Leeuw, F.; Couvidat, F. Benzo (a) pyrene in Europe: Ambient air concentrations, population exposure and health effects. Environ. Pollut. 2016, 214, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Air Quality in Europe—2018 Report (online). European Environment Agency 2018. ISSN 1977-8449. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2018 (accessed on 10 April 2019).
- EC. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner air for Europe [Directive 2008/50/EC of the European Parliament and of the Council on Ambient Air Quality and Cleaner Air for Europe] (online). 2008. Available online: http://eur-lex.europa.eu/legal-content/CS/TXT/ PDF/?uri=CELEX:32008L0050&from=EN (accessed on 20 September 2017).
- CHMI. Air Pollution in the Czech Republic in 2017; ČHMÚ: Praha, Czech Republic, 2018; ISBN 978-80-87577-72-1. [Google Scholar]
- European Environment Agency (EEA). EEA Report No 4/2012; EEA: Copenhagen, Denmark, 2012. [Google Scholar]
- European Environment Agency (EEA). EEA Report No 9/2013; EEA: Copenhagen, Denmark, 2013. [Google Scholar]
- European Environment Agency (EEA). EEA Report No 5/2014; EEA: Copenhagen, Denmark, 2014. [Google Scholar]
- CENIA (online). Report on the Environment of the Czech Republic. CENIA. 2018. Available online: https://www.cenia.cz/wp-content/uploads/2019/03/Report-on-the-Environment-of-the-Czech-Republic_2017-2.pdf (accessed on 26 June 2019).
- Váňa, M.; Dvorská, A. Košetice Observatory—25 Years; CHMI: Praha, Czech Republic, 2014; ISBN 978-80-87577-40-0. [Google Scholar]
- ČSN EN 12341. Air Quality—Reference Gravimetric Method for Determination of Mass Concentration of PM10 and PM2.5 Aerosol Particles; Office for Technical Standardization, Metrology and Testing: Praha, Czech Republic, 2014; 56p, Classification mark 835612 (CZ). [Google Scholar]
- ČSN P CEN/TS 16645. Air Quality—Method for Measuring Benzo [a] Anthracene, Benzo [b] Fluoranthene, Benzo [j] Fluoranthene, Benzo [k] Fluoranthene, Dibenz [a, h] Anthracene, Indeno [1,2, 3-cd] Pyrene and Benzo [ghi] Perylene; Office for Technical Standardization, Metrology and Testing: Praha, Czech Republic, 2014; 56p, Classification mark 835636 (CZ). [Google Scholar]
- ČSN EN 15549. Air Quality–Standard Method for the Determination of Benzo [a] Pyrene in Ambient Air; Office for Technical Standardization, Metrology and Testing: Praha, Czech Republic, 2010; 44p, Classification mark 835636 (CZ). [Google Scholar]
- Larsen, M.C.; Angus, W.G.; Brake, P.B.; Eltom, S.E.; Sukow, K.A.; Jefcoate, C.R. Characterization of CYP1B1 and CYP1A1 expression in human mammary epithelial cells: Role of the aryl hydrocarbon receptor in polycyclic aromatic hydrocarbon metabolism. Cancer Res. 1998, 58, 2366–2374. [Google Scholar] [PubMed]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Malm, W.C.; Sisler, J.F. Atmospheric aerosol over Alaska: 2. Elemental composition and sources. J. Geophys. Res. Atmos. 1998, 103, 19045–19057. [Google Scholar] [CrossRef]
- Uria-Tellaetxe, I.; Carslaw, D.C. Conditional bivariate probability function for source identification. Environ. Model. Softw. 2014, 59, 1–9. [Google Scholar] [CrossRef] [Green Version]
- R.C. Team. A language and environment for statistical computing. Computing 2013. Available online: http://www.R-project.org/ (accessed on 15 January 2019). [CrossRef]
- Carslaw, D.C.; Beevers, S.D. Characterising and understanding emission sources using bivariate polar plots and k-means clustering. Environ. Model. Softw. 2013, 40, 325–329. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Ashbaugh, L.L. A statistical trajectory technique for determining air pollution source regions. J. Air Pollut. Control Assoc. 1983, 33, 1096–1098. [Google Scholar] [CrossRef]
- Hoh, E.; Hites, R.A. Sources of toxaphene and other organochlorine pesticides in North America as determined by air measurements and potential source contribution function analyses. Environ. Sci. Technol. 2004, 38, 4187–4194. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Hopke, P.K. A study of the sources of acid precipitation in Ontario, Canada. Atmos. Environ. (1967) 1989, 23, 1499–1509. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In Henri Theil′s Contributions to Economics and Econometrics; Springer: Dordrecht, The Netherlands, 1950; pp. 345–381. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall′s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- CHMI (online). Available online: http://portal.chmi.cz/historicka-data/pocasi/otopna-sezona (accessed on 15 January 2019).
- Dvorská, A.; Lammel, G.; Klánová, J. Use of diagnostic ratios for studying source apportionment and reactivity of ambient polycyclic aromatic hydrocarbons over Central Europe. Atmos. Environ. 2011, 45, 420–427. [Google Scholar] [CrossRef]
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef] [Green Version]
- Dvorská, A.; Lammel, G.; Klanova, J.; Holoubek, I. Kosetice, Czech Republic—Ten years of air pollution monitoring and four years of evaluating the origin of persistent organic pollutants. Enviroon. Pollut. 2008, 156, 403–408. [Google Scholar]
- Umweltbundesam: Air Quality 2017 (online). Deutschland. 2018. Available online: https://www.umweltbundesamt.de/publikationen/air-quality-2017 (accessed on 15 January 2019).
- Spangl, W. Jahresbericht der Luftgütemessungen in Österreich DER (online). 2017. Available online: http://www.umweltbundesamt.at/fileadmin/site/publikationen/REP0643.pdf (accessed on 15 January 2019).
- Iwanek, J. Air Quality in Poland in 2013–2014 in the Light of the Results of Measurements Carried out under the State Environmental Monitoring (online). 2016. Available online: https://wios.rzeszow.pl/wpcontent/uploads/2016/01/Raport_PMS_2013-2014-fin.pdf (accessed on 15 January 2019).
- Klánová, J.; Čupr, P.; Holoubek, I.; Borůvková, J.; Přibylová, P.; Kareš, R.; Kohoutek, J.; Dvorská, A.; Komprda, J. Towards the Global Monitoring of POPs; Contribution of the MONET Networks. RECETOX MU Brno. RECETOX_TOCOEN REPORTS No. 357.; Masaryk university: Brno, Czechia, 2009; ISBN 978-80-210-4853-9. [Google Scholar]
- Dvorská, A.; Komprdová, K.; Lammel, G.; Klánová, J.; Plachá, H. Polycyclic aromatic hydrocarbons in background air in central Europe—Seasonal levels and limitations for source apportionment. Atmos. Environ. 2012, 46, 147–154. [Google Scholar] [CrossRef]
- CHMI. Air Pollution in the Czech Republic in 2016; ČHMÚ: Praha, Czech Republic, 2017; ISBN 978-80-87577-62-4. [Google Scholar]
- CHMI. Air Pollution in the Czech Republic in 2015; ČHMÚ: Praha, Czech Republic, 2016; ISBN 978-80-87577-60-8. [Google Scholar]
- CHMI. Air Pollution in the Czech Republic in 2014; ČHMÚ: Praha, Czech Republic, 2015; ISBN 978-80-87577-52-3. [Google Scholar]
- CHMI. Air Pollution in the Czech Republic in 2013; ČHMÚ: Praha, Czech Republic, 2014; ISBN 978-80-87577-20-2. [Google Scholar]
- Modlík, M. Evaluation of the emission situation in the surroundings Košetice Observatory. Ochr. Ovzduší (CZ) 2013, 25, 13–14. [Google Scholar]
- ČSÚ. Energo 2015 (online). 2015. Available online: https://www.czso.cz/csu/czso/energo-2015 (accessed on 1 July 2019).
- Horak, J.; Kubonova, L.; Krpec, K.; Hopan, F.; Kubesa, P.; Motyka, O.; Placha, D. PAH emissions from old and new types of domestic hot water boilers. Enviroon. Pollut. 2017, 225, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Johansson, L.S.; Leckner, B.; Gustavsson, L.; Cooper, D.; Tullin, C.; Potter, A. Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmos. Environ. 2004, 38, 4183–4195. [Google Scholar] [CrossRef]
- Křůmal, K.; Mikuška, P.; Horák, J.; Hopan, F.; Krpec, K. Comparison of emissions of gaseous and particulate pollutants from the combustion of biomass and coal in modern and old-type boilers used for residential heating in the Czech Republic, Central Europe. Chemosphere 2019, 229, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.; Cusack, M.; Karban, J.; Chalupníčková, E.; Havránek, V.; Smolík, J.; Ždímal, V. PM2.5 chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis. Atmos. Res. 2016, 176, 108–120. [Google Scholar] [CrossRef]
- CZSO (online). Available online: https://www.czso.cz/csu/czso/pru_m (accessed on 26 June 2019).
- Davis, J.B. Economics imperialism under the impact of psychology: The case of behavioral development economics. Œconomia. Hist. Methodol. Philos. 2013, 3, 119–138. [Google Scholar]
- Adámková, H. Statistika & My (CZ). Prague CZSO 2015. Available online: https://www.statistikaamy.cz/2018/10/srovnavat-odvetvi-bylo-vzdy-atraktivni/ (accessed on 24 April 2019).
- Eurostat (online). Available online: https://ec.europa.eu/eurostat/data/database (accessed on 26 June 2019).
- Skácel, J.; Vojtíšek, M.; Beránek, V.; Pechout, M. Black Sheep-Detecting Polluting Vehicles on the Road using Roadside Particle Measurement. In SBORNÍK XIX. VÝROČNÍ KONFERENCE ČESKÉ AEROSOLOVÉ SPOLEČNOSTI; Czech Aerosol Society: Piešťany, 2018; p. 20. ISBN1 978-80-270-6416-8. Available online: http://cas.icpf.cas.cz/download/Sbornik_VKCAS_2018.pdf#page=20 (accessed on 26 June 2019)ISBN2 978-80-270-6416-8.
- CHMI (online). 2018. Available online: http://portal.chmi.cz/files/portal/docs/uoco/oez/embil/dokumentySpolecne.html (accessed on 26 June 2019).
- EMEP (online). European Monitoring and Evaluation Programme. 2019. Available online: https://www.ceip.at/ (accessed on 26 June 2019).
- CHMI (online). Emission Balance of the Czech Republic. Available online: http://portal.chmi.cz/files/portal/docs/uoco/oez/emisnibilance_CZ.html (accessed on 26 June 2019).
- Leníček, J.; Sekyra, M.; Bednárková, K.; Beneš, I.; Šípek, F. Fractionation and chemical analysis of urban air particulate extracts. Int. J. Environ. Anal. Chem. 2000, 77, 269–288. [Google Scholar] [CrossRef]
- Guo, H.; Lee, S.C.; Ho, K.F.; Wang, X.M.; Zou, S.C. Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmos. Environ. 2003, 37, 5307–5317. [Google Scholar] [CrossRef]
- Křůmal, K.; Mikuška, P.; Večeřa, Z. Polycyclic aromatic hydrocarbons and hopanes in PM1 aerosols in urban areas. Atmos. Environ. 2013, 67, 27–37. [Google Scholar] [CrossRef]
- Rogula-Kopiec, P.; Rogula-Kozłowska, W.; Kozielska, B.; Sówka, I. PAH Concentrations Inside a Wood Processing Plant and the Indoor Effects of Outdoor Industrial Emissions. Pol. J. Environ. Stud 2015, 24, 1867–1873. [Google Scholar] [CrossRef]
- Garrido, A.; Jiménez-Guerrero, P.; Ratola, N. Levels, trends and health concerns of atmospheric PAHs in Europe. Atmos. Environ. 2014, 99, 474–484. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Zhang, Y.; Zhao, H.; Tan, F.; Wu, X.; Chen, J. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the air of Dalian, China: Correlations with six criteria air pollutants and meteorological conditions. Chemosphere 2019, 216, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Tham, Y.W.; Takeda, K.; Sakugawa, H. Polycyclic aromatic hydrocarbons (PAHs) associated with atmospheric particles in Higashi Hiroshima, Japan: Influence of meteorological conditions and seasonal variations. Atmos. Res. 2008, 88, 224–233. [Google Scholar] [CrossRef]
- Lammel, G.; Novák, J.; Landlová, L.; Dvorská, A.; Klánová, J.; Čupr, P.; Škrdlíková, L. Sources and Distributions of Polycyclic Aromatic Hydrocarbons and Toxicity of Polluted Atmosphere Aerosols. In Urban Airborne Particulate Matter; Springer: Berlin/Heidelberg, Germany, 2010; pp. 39–62. [Google Scholar]
- Liu, W.; Hopke, P.K.; Han, Y.J.; Yi, S.M.; Holsen, T.M.; Cybart, S.; Milligan, M. Application of receptor modeling to atmospheric constituents at Potsdam and Stockton, NY. Atmos. Environ. 2003, 37, 4997–5007. [Google Scholar] [CrossRef]
- Ravindra, K.; Bencs, L.; Wauters, E.; De Hoog, J.; Deutsch, F.; Roekens, E.; Van Grieken, R. Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmos. Environ. 2006, 40, 771–785. [Google Scholar] [CrossRef] [Green Version]
- Dejean, S.; Raynaud, C.; Meybeck, M.; Della Massa, J.P.; Simon, V. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric urban area: Monitoring on various types of sites. Environ. Monit. Assess. 2009, 148, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Bari, M.A.; Baumbach, G.; Kuch, B.; Scheffknecht, G. Wood smoke as a source of particle-phase organic compounds in residential areas. Atmos. Environ. 2009, 43, 4722–4732. [Google Scholar] [CrossRef]
- Komprda, J.; Kubošová, K.; Dvorská, A.; Scheringer, M.; Klánová, J.; Holoubek, I. Application of an unsteady state environmental distribution model to a decadal time series of PAH concentrations in Central Europe. J. Environ. Monit. 2009, 11, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.L.C.; Farrington, J.W.; Reddy, C.M. Combustion-derived polycyclic aromatic hydrocarbons in the environment—A review. Environ. Forensics 2005, 6, 109–131. [Google Scholar] [CrossRef]
- Pokorná, P.; Hovorka, J.; Klán, M.; Hopke, P.K. Source apportionment of size resolved particulate matter at a European air pollution hot spot. Sci. Total Environ. 2015, 502, 172–183. [Google Scholar] [CrossRef]
- Pokorná, P.; Schwarz, J.; Krejci, R.; Swietlicki, E.; Havránek, V.; Ždímal, V. Comparison of PM2.5 chemical composition and sources at a rural background site in Central Europe between 1993/1994/1995 and 2009/2010: Effect of legislative regulations and economic transformation on the air quality. Environ. Pollut. 2018, 241, 841–851. [Google Scholar] [CrossRef]
- Ministry of the Environment: ME Directive 9/2009 (online). 2009. Available online: http://www.zelenausporam.cz/sekce/564/smernice-mzp-9-2009---obytne-budovy/ (accessed on 26 June 2019).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lhotka, R.; Pokorná, P.; Zíková, N. Long-Term Trends in PAH Concentrations and Sources at Rural Background Site in Central Europe. Atmosphere 2019, 10, 687. https://doi.org/10.3390/atmos10110687
Lhotka R, Pokorná P, Zíková N. Long-Term Trends in PAH Concentrations and Sources at Rural Background Site in Central Europe. Atmosphere. 2019; 10(11):687. https://doi.org/10.3390/atmos10110687
Chicago/Turabian StyleLhotka, Radek, Petra Pokorná, and Naděžda Zíková. 2019. "Long-Term Trends in PAH Concentrations and Sources at Rural Background Site in Central Europe" Atmosphere 10, no. 11: 687. https://doi.org/10.3390/atmos10110687
APA StyleLhotka, R., Pokorná, P., & Zíková, N. (2019). Long-Term Trends in PAH Concentrations and Sources at Rural Background Site in Central Europe. Atmosphere, 10(11), 687. https://doi.org/10.3390/atmos10110687