Area-Averaged Surface Moisture Flux over Fragmented Sea Ice: Floe Size Distribution Effects and the Associated Convection Structure within the Atmospheric Boundary Layer
Abstract
:1. Introduction
2. Methods
2.1. Configuration of the WRF Model
2.2. Calculation of Spatial Coverage of Convective Structures
2.3. Computation of Area-Averaged Surface Moisture Heat Flux
3. Results
3.1. Horizontal and Vertical Structure of Convection
3.2. Correction Coefficient for Surface Moisture Flux
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Appendix A
Model Domain | Rectangular, periodic boundaries in both horizontal directions |
Horizontal resolution | 100 m |
Number of grid points | 200 × 200 |
Model top height | 2000 m |
Air column | 61 -levels with exponential thickness distribution |
Physics Parametrizations | |
Microphysics | WRF Single-Moment 5-class scheme |
Longwave radiation | RRTMG Scheme |
Surface layer | Eta Similarity Scheme |
Land Layer | Noah Land Surface Model |
Large-eddy simulation | 1.5-order TKE scheme |
Sea Ice Options | |
Sea ice in a grid cell | Treats sea ice as fractional field. |
Maximum allowed snow accumulation on sea ice | 10 m |
Minimum allowed accumulation of snow on sea ice | 0.001 m |
Default sea ice thickness | 1.5 m |
References
- Vihma, T.; Screen, J.; Tjernström, M.; Newton, B.; Zhang, X.; Popova, V.; Deser, C.; Holland, M.; Prowse, T. The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. J. Geophys. Res. Biogeosci. 2016, 121, 586–620. [Google Scholar] [CrossRef] [Green Version]
- Proshutinsky, A.; Steele, M.; Timmermans, M. Forum for Arctic Modeling and Observational Synthesis (FAMOS): Past, current, and future activities. J. Geophys. Res. Oceans 2016, 121, 3803–3819. [Google Scholar] [CrossRef] [Green Version]
- Glendening, J.; Burk, S. Turbulent transport from an arctic lead: A large-eddy simulation. Bound.-Layer Meteorol. 1992, 59, 315–339. [Google Scholar] [CrossRef]
- Mauritsen, T.; Svensson, G.; Grisogono, B. Wave flow simulations over Arctic leads. Bound.-Layer Meteorol. 2005, 117, 259–273. [Google Scholar] [CrossRef]
- Lüpkes, C.; Gryanik, V.; Witha, B.; Gryschka, M.; Raasch, S.; Gollnik, T. Modeling convection over arctic leads with LES and a non-eddy-resolving microscale model. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Zulauf, M.; Krueger, S. Two-dimensional numerical simulations of Arctic leads: Plume penetration height. J. Geophys. Res. 2003, 108, 8050. [Google Scholar] [CrossRef]
- Gultepe, I.; Isaac, G.; Williams, A.; Marcotte, D.; Strawbridge, K. Turbulent heat fluxes over leads and polynyas, and their effects on arctic clouds during FIRE.ACE: Aircraft observations for April 1998. Atmos.-Ocean 2003, 41, 15–34. [Google Scholar] [CrossRef]
- Tetzlaff, A.; Lüpkes, C.; Hartmann, J. Aircraft-based observations of atmospheric boundary-layer modification over Arctic leads. Q. J. R. Meteorol. Soc. 2015, 141, 2839–2856. [Google Scholar] [CrossRef]
- Andreas, E.; Miles, W.; Barry, R.; Schnell, R. Lidar-derived particle concentrations in plumes from Arctic leads. Ann. Glaciol. 1990, 14, 9–12. [Google Scholar] [CrossRef]
- Ruffieux, D.; Persson, O.; Fairall, C.; Wolfe, D. Ice pack and lead surface energy budgets during LEADEX 1992. J. Geophys. Res. Oceans. 1995, 100, 4593–4612. [Google Scholar] [CrossRef]
- Alam, A.; Curry, J. Lead-induced atmospheric circulations. J. Geophys. Res. 1995, 100, 4643–4651. [Google Scholar] [CrossRef]
- Burk, S.; Fett, R.; Englebretson, R. Numerical simulation of cloud plumes emanating from Arctic leads. J. Geophys. Res. Atmos. 1997, 102, 16529–16544. [Google Scholar] [CrossRef]
- Marcq, S.; Weiss, J. Influence of leads widths distribution on turbulent heat transfer. Cryosphere 2012, 6, 143–156. [Google Scholar] [CrossRef]
- Lüpkes, C.; Vihma, T.; Birnbaum, G.; Dierer, S.; Garbrecht, T.; Gryanik, V.; Gryschka, M.; Hartmann, J.; Heinemann, G.; Kaleschke, L.; et al. Mesoscale modelling of the Arctic atmospheric boundary layer and its interaction with sea ice. In The ACSYS Decade and Beyond; Atmospheric and Oceanographic Sciences Library 43; Springer: Dordrecht, The Netherlands, 2012; pp. 279–324. [Google Scholar]
- Qu, M.; Pang, X.; Zhao, X.; Zhang, J.; Ji, Q.; Fan, P. Estimation of turbulent heat flux over leads using satellite thermal images. Cryosphere 2019, 13, 1565–1582. [Google Scholar] [CrossRef] [Green Version]
- Dare, R.; Atkinson, W. Atmospheric Response To Spatial Variations In Concentration And Size Of Polynyas In The Southern Ocean Sea-Ice Zone. Bound.-Layer Meteorol. 2000, 94, 65–88. [Google Scholar] [CrossRef]
- Wenta, M.; Herman, A. The influence of the spatial distribution of leads and ice floes on the atmospheric boundary layer over fragmented sea ice. Ann. Glaciol. 2018, 59, 213–230. [Google Scholar] [CrossRef] [Green Version]
- Batrak, J.; Müller, M. Atmospheric Response to Kilometer-Scale Changes in Sea Ice Concentration Within the Marginal Ice Zone. Geophys. Res. Lett. 2018, 45, 6702–6709. [Google Scholar] [CrossRef]
- Saunders, P. Sea smoke and steam fog. Q. J. R. Meteorol. Soc. 1964, 90, 156–165. [Google Scholar] [CrossRef]
- Walter, B.; Overland, J. Observations of Longitudinal Rolls in a Near Neutral Atmosphere. Mon. Weather Rev. 1984, 112, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Fett, R.; Burk, S.; Thompson, W.; Kozo, T. Environmental Phenomena of the Beaufort Sea Observed during the Leads Experiment. Bull. Am. Meteorol. Soc. 1994, 75, 2131–2146. [Google Scholar] [CrossRef]
- Esau, I. Amplification of turbulent exchange over wide Arctic leads:Large-eddy simulation study. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Rockel, B.; Will, A.; Hense, A. The regional climate model COSMO-CLM (CCLM). Meteorol. Z. 2008, 17, 347–348. [Google Scholar] [CrossRef]
- Vihma, T. Subgrid parameterization of surface heat and momentum fluxes over polar oceans. J. Geophys. Res. Oceans 1995, 100, 22625–22646. [Google Scholar] [CrossRef] [Green Version]
- Arola, A. Parameterization of Turbulent and Mesoscale Fluxes for Heterogeneous Surfaces. J. Atmos. Sci. 1999, 56, 584–598. [Google Scholar] [CrossRef]
- Heinemann, G.; Kerschgens, M. Comparison of methods for area-averaging surface energy fluxes over heterogeneous land surfaces using high-resolution non-hydrostatic simulations. Int. J. Climatol. 2005, 25, 379–403. [Google Scholar] [CrossRef]
- Avissar, R.; Pielke, R. A Parameterization of Heterogeneous Land Surfaces for Atmospheric Numerical Models and Its Impact on Regional Meteorology. Mon. Weather Rev. 1989, 117, 2113–2136. [Google Scholar] [CrossRef] [Green Version]
- Claussen, M. Area-averaging of surface fluxes in a neutrally stratified, horizontally inhomogeneous atmospheric boundary layer. Atmos. Environ. Part A Gen. Top. 1990, 4, 1349–1360. [Google Scholar] [CrossRef]
- de Vrese, P.; Schulz, J.; Hagemann, S. On the Representation of Heterogeneity in Land-Surface–Atmosphere Coupling. Bound.-Layer Meteorol. 2016, 160, 157–183. [Google Scholar] [CrossRef]
- Frech, M.; Jochum, A. The Evaluation of Flux Aggregation Methods using Aircraft Measurements in the Surface Layer. Agric. For. Meteorol. 1999, 98–99, 121–143. [Google Scholar] [CrossRef]
- Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environ. Res. Lett 2018, 13, 105005. [Google Scholar] [CrossRef]
- Rampal, P.; Weiss, J.; Marsan, D. Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007. J. Geophys. Res. Oceans 2009, 114. [Google Scholar] [CrossRef]
- Rothrock, D.; Thorndike, A. Measuring the sea ice floe size distribution. J. Geophys. Res. Oceans 1984, 89, 6477–6486. [Google Scholar] [CrossRef]
- Steele, M. Sea ice melting and floe geometry in a simple ice-ocean model. J. Geophys. Res. Oceans 1992, 97, 17729–17738. [Google Scholar] [CrossRef]
- Zhang, J.; Schweiger, A.; Steele, M.; Stern, H. Sea ice floe size distribution in the marginal ice zone: Theory and numerical experiments. J. Geophys. Res. Oceans 2015, 120, 3484–3498. [Google Scholar] [CrossRef]
- Horvat, C.; Tziperman, E.; Campin, J. Interaction of sea ice floe size, ocean eddies, and sea ice melting. Geophys. Res. Lett. 2016, 43, 8083–8090. [Google Scholar] [CrossRef] [Green Version]
- Horvat, C.; Tziperman, E. A prognostic model of the sea-ice floe size and thickness distribution. Cryosphere 2015, 9, 2119–2134. [Google Scholar] [CrossRef] [Green Version]
- Roach, L.; Horvat, C.; Dean, S.; Bitz, C. An Emergent Sea Ice Floe Size Distribution in a Global Coupled Ocean-Sea Ice Model. J. Geophys. Res. Oceans 2018, 123, 4322–4337. [Google Scholar] [CrossRef]
- Herman, A. Discrete-Element bonded-particle Sea Ice model DESIgn, version 1.3a—Model description and implementation. Geosci. Model Dev. Discuss. 2016, 9, 1219–1241. [Google Scholar] [CrossRef]
- Uttal, T.; Curry, J.; Mcphee, M.; Perovich, D.; Moritz, R.; Maslanik, J.; Guest, P.; Stern, H.; Moore, J.; Turenne, R.; et al. Surface Heat Budget of the Arctic Ocean. Bull. Am. Meteorol. Soc. 2002, 83, 255–275. [Google Scholar] [CrossRef] [Green Version]
- Janjić, Z. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Mesoscale Model; Office Note #437; National Centers for Environmental Prediction Office: College Park, MD, USA, 2001.
- Janić, Z. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Monin, A.; Obukhov, A. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USRR 1954, 151, 163–187. [Google Scholar]
- Young, G.; Kristovich, D.; Hjelmfelt, M.; Foster, R. Rolls, Streets, Waves, and More. Bull. Am. Meteorol. Soc. 2002, 83, 997–1002. [Google Scholar] [CrossRef]
- Canepa, E.; Irwin, J. Chapter 17: Evaluation Of Air Pollution Models. In Air Quality Modeling—Theories, Methodologies, Computational Techniques, and Available Data Bases and Software, V.II – Advanced Topics; The EnvironComp Institute and Air and Waste Management Association: Pittsburgh, PA, USA, 2005; pp. 503–556. [Google Scholar]
- Zulauf, M.; Krueger, S. Two-dimensional cloud-resolving modeling of the atmospheric effects of Arctic leads based upon midwinter conditions at the Surface Heat Budget of the Arctic Ocean ice camp. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Esau, I.; Sorokina, S. Climatology of Arctic Planetary Boundary Layer. In Atmospheric Turbulence, Meteorological Modeling and Aerodynamics; Langand, P.R., Lombarg, F.S., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2010; pp. 3–58. [Google Scholar]
c | RMSE | CC |
---|---|---|
50% | 0.29 | 0.98 |
60% | 0.05 | 0.99 |
70% | 0.11 | 0.99 |
80% | 0.07 | 0.99 |
85% | 0.17 | 0.99 |
90% | 0.18 | 0.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wenta, M.; Herman, A. Area-Averaged Surface Moisture Flux over Fragmented Sea Ice: Floe Size Distribution Effects and the Associated Convection Structure within the Atmospheric Boundary Layer. Atmosphere 2019, 10, 654. https://doi.org/10.3390/atmos10110654
Wenta M, Herman A. Area-Averaged Surface Moisture Flux over Fragmented Sea Ice: Floe Size Distribution Effects and the Associated Convection Structure within the Atmospheric Boundary Layer. Atmosphere. 2019; 10(11):654. https://doi.org/10.3390/atmos10110654
Chicago/Turabian StyleWenta, Marta, and Agnieszka Herman. 2019. "Area-Averaged Surface Moisture Flux over Fragmented Sea Ice: Floe Size Distribution Effects and the Associated Convection Structure within the Atmospheric Boundary Layer" Atmosphere 10, no. 11: 654. https://doi.org/10.3390/atmos10110654
APA StyleWenta, M., & Herman, A. (2019). Area-Averaged Surface Moisture Flux over Fragmented Sea Ice: Floe Size Distribution Effects and the Associated Convection Structure within the Atmospheric Boundary Layer. Atmosphere, 10(11), 654. https://doi.org/10.3390/atmos10110654