The Baja California Peninsula, a Significant Source of Dust in Northwest Mexico
Abstract
:1. Introduction
2. Study Area
2.1. Location and Geography
2.2. Climate
3. Data and Methods
3.1. Dust Emission Flux from San Felipe and Vizcaino
3.2. Association between Hydrometeorological Variables and Dust Emission Flux
3.2.1. Intra-Annual Variability
3.2.2. Interannual Variability
3.3. Effects of ENSO on the Frequency and Intensity of Dust Events
4. Results
4.1. Intra-Annual Variability
4.2. Interannual Variability, Trends in Dust Emissions Flux and Hydrometeorological Variables
Influence of El Niño on Dust Emission Flux
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shao, Y.; Wyrwoll, K.H.; Chappell, A.; Huang, J.; Lin, Z.; McTainsh, G.H.; Mikami, M.; Tanaka, T.Y.; Wang, X.; Yoon, S. Dust cycle: An emerging core theme in Earth system science. Aeolian Res. 2011, 2, 181–204. [Google Scholar] [CrossRef]
- Haustein, K.; Washington, R.; King, J.; Wiggs, G.; Thomas, D.S.G.; Eckardt, F.D.; Bryant, R.G.; Menut, L. Testing the performance of state-of-the-art dust emission schemes using DO4Models field data. Geosci. Model Dev. 2015, 8, 341–362. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y. Physics and Modelling of Wind Erosion; Springer Science & Business Media: Berlin, Germany, 2008; Volume 37. [Google Scholar]
- Shao, Y.P.; Raupach, M.R.; Leys, J.F. Leys A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region. Soil Res. 1996, 34, 309–342. [Google Scholar] [CrossRef]
- Westphal, D.L.; Toon, O.B.; Carlson, T.N. A two-dimensional numerical investigation of the dynamics and microphysics of Saharan dust storms. J. Geophys. Res. Atmos. 1987, 92, 3027–3049. [Google Scholar] [CrossRef]
- Westphal, D.L.; Toon, O.B.; Carlson, T.N. A Case Study of Mobilization and Transport of Saharan Dust. J. Atmos. Sci. 1988, 45, 2145–2175. [Google Scholar] [CrossRef] [Green Version]
- Nickling, W.G.; Gillies, J.A. Dust emission and transport in Mali, West Africa. Sedimentology 1993, 40, 859–868. [Google Scholar] [CrossRef]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Gillette, D.A. Fine Particulate Emissions Due to Wind Erosion. Trans. ASAE 1977, 20, 890–897. [Google Scholar] [CrossRef]
- Gillette, D.A.; Passi, R. Modeling dust emission caused by wind erosion. J. Geophys. Res. Atmos. 1988, 93, 14233–14242. [Google Scholar] [CrossRef] [Green Version]
- Marticorena, B.; Bergametti, G. Modeling the Atmospheric Dust Cycle: 1. Design of a Soil-Derived Dust Emission Scheme. Available online: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/95JD00690. (accessed on 10 September 2019).
- Lu, H.; Shao, Y. Toward quantitative prediction of dust storms: an integrated wind erosion modelling system and its applications. Environ. Model. Softw. 2001, 16, 233–249. [Google Scholar] [CrossRef]
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovik, O.; Lin, S.J. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. Atmos. 2001, 106, 20255–20273. [Google Scholar] [CrossRef]
- Nickovic, S.; Kallos, G.; Papadopoulos, A.; Kakaliagou, O. A model for prediction of desert dust cycle in the atmosphere. J. Geophys. Res. Atmos. 2001, 106, 18113–18129. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y. Simplification of a dust emission scheme and comparison with data. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Okin, G.S.; Reheis, M.C. An ENSO predictor of dust emission in the southwestern United States. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef]
- Ji, Z.; Wang, G.; Pal, J.S.; Yu, M. Potential climate effect of mineral aerosols over West Africa: Part II—Contribution of dust and land cover to future climate change. Clim. Dyn. 2018, 50, 2335–2353. [Google Scholar] [CrossRef]
- Song, H.; Wang, K.; Zhang, Y.; Hong, C.; Zhou, Y.S. Simulation and evaluation of dust emissions with WRF-Chem (v3.7.1) and its relationship to the changing climate over East Asia from 1980 to 2015. Atmos. Environ. 2017, 167, 511–522. [Google Scholar] [CrossRef]
- Pu, B.; Ginoux, P. Projection of American dustiness in the late 21st century due to climate change. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Barbosa, A.; Segovia-Zavala, J.A.; Huerta-Diaz, M.A. Atmospheric iron fluxes in the northern region of the Gulf of California: Implications for primary production and potential. Deep Sea Res. Part Oceanogr. Res. Pap. 2017, 129, 69–79. [Google Scholar] [CrossRef]
- Morales-Acuña, E.; Torres, C.R.; Linero-Cueto, J.R. Surface wind characteristics over Baja California Peninsula during summer. Reg. Stud. Mar. Sci. 2019, 29, 100654. [Google Scholar] [CrossRef]
- SEMARNAT. Informe de la Situación del Medio Ambiente en México. Compendio de Estadísticas Ambientales. Indicadores Clave, de Desempeño Ambiental y de Crecimiento Verde; Semarnat: Mexico City, Mexico, 2016.
- Ivanova, A.; Gámez, A. Baja California Sur Ante el Cambio Climático: Vulnerabilidad, Mitigación y Adaptación. Estudios Para la Elaboración Del Plan Estatal de Acción Ante el Cambio Climático (PEACC-BCS); UABCS, CIBNOR, CICIMAR, CICESE, CONACYT, INE, SEMARNAT, La Paz, BCS, Eds.; Diario Oficial de la Federación: Mexico City, Mexico, 2012; ISBN 978-607-7777-31-1.
- Salinas-Zavala, C.A.; Martínez-Rincón, R.O.; Morales-Zárate, M.V. Tendencia en el siglo XXI del Índice de Diferencias Normalizadas de Vegetación (NDVI) en la parte sur de la península de Baja California. Investigaciones Geográficas 2017, 94, 82–90. [Google Scholar] [CrossRef]
- González-Abraham, C.E.; Garcillán, P.P.; Ezcurra, E. Grupo de trabajo de ecorregiones Ecorregiones de la península de Baja California: Una síntesis. Bol. Soc. Botánica México 2010, 87, 69–82. [Google Scholar]
- Morales-Acuña, E. Influencia de la Viriabilidad Espacio-Temporal del Viento en el Transporte de Polvo Hacia el Golfo de California. Ph.D. Thesis, Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas, La Paz, Bolivia, 2015. [Google Scholar]
- INEGI. Síntesis de Información Geográfica del Estado de Baja California; Instituto Nacional de Estadística, Geografía e Informática: Mexico City, Mexico, 2010. [Google Scholar]
- Turrent, C.; Zaitsev, O. Seasonal Cycle of the Near-Surface Diurnal Wind Field Over the Bay of La Paz, Mexico. Bound. Layer Meteorol. 2014, 151, 353–371. [Google Scholar] [CrossRef]
- Dominguez-Pérez, D.-A. Influencia de los Sistemas de Brisas Marinas en el Desarrollo de Precipitación Sobre la Península de Baja California; Centro de Investigación Científica y de Educación Superior de Ensenada: Ensenada, Mexico, 2017. [Google Scholar]
- Carlos, T.N.; Sergio, L.C.; Adán, M.T.; Jaime, G.T.; Mariana, M.C.; Eduardo, G.S. Numerical experiments of wind circulation off Baja California coast. In Experimental and Computational Fluid Mechanics; Klapp, J., Medina, A., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 327–339. [Google Scholar]
- Torres, C.R.; Lanz, E.E.; Larios, S.I. Effect of wind direction and orography on flow structures at Baja California Coast: A numerical approach. J. Comput. Appl. Math. 2016, 295, 48–61. [Google Scholar] [CrossRef]
- Torres-Navarrete, C.R.; Larios, S.I. Modelling Three-Dimensional Winds on a NW Pacific Region of Mexico Using Boundary-Fitted Grids. Open J. Mar. Sci. 2016, 7, 327–339. [Google Scholar] [CrossRef]
- Shao, Y.; Raupach, M.; Fimdlater, P. Effect of Saltation Bombardment on the Entrainment of Dust by Wind. J. Geophys. Res. Atmos. 1993, 98, 12719–12726. [Google Scholar] [CrossRef]
- Tegen, I.; Fung, I. Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. J. Geophys. Res. Atmos. 1994, 99, 22897–22914. [Google Scholar] [CrossRef]
- Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics—Vol 1: Mechanics of Turbulence, 1st ed.; MIT Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Lonin, S.A.; Linero, J. Parametrización de rugosidad de la superficie del mar bajo la inestabilidad de la capa próxima y la edad del oleaje. Boletín Científico 2009, 27, 22–28. [Google Scholar] [CrossRef]
- Wieringa, J. Updating the Davenport roughness classification. J. Wind Eng. Ind. Aerodyn. 1992, 41, 357–368. [Google Scholar] [CrossRef]
- Song, X.; Zhang, H.; Chen, J.; Park, S. Flux–Gradient Relationships in the Atmospheric Surface Layer Over the Gobi Desert in China. Bound. Layer Meteorol. 2010, 134, 487–498. [Google Scholar] [CrossRef]
- Pasquill, F. The Estimation of the Dispersion of Windborne Material. Meteorol. Mag. 1961, 90, 33–49. [Google Scholar]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Thomson, R.E.; Emery, W.J. Data Analysis Methods in Physical Oceanography; Newnes: Oxford, UK, 2014. [Google Scholar]
- Santamaría-del-Ángel, E.; González-Silvera, A.; Millán-Núñez, R.; Cajal-Medrano, R. Determining dynamic biogeographic regions using remote sensing data. In Handbook of Satellite Remote Sensing Image Interpretation: Applications for Marine Living Resources Conservation and Management; U PRESPO and IOCCG: Dartmouth, NS, Canada, 2011; pp. 273–293. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Dahmen, E.R.; Hall, M.J. Screening of Hydrological Data: Tests for Stationarity and Relative Consistency; ILRI: Wageningen, The Netherlands, 1990. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Santamaría-del-Angel, E.; Millán-Núñez, R.; Cajal-Medrano, R. Effect of Turbulent Kinetic Energy on The Spatial Distribution of Chlorophyll a in a Small Coastal Lagoon. Ciencias Marinas 1992, 18, 1–16. [Google Scholar] [CrossRef]
- Azaria, M.; Hertz, D. Time delay estimation by generalized cross correlation methods. IEEE Trans. Acoust. Speech Signal Process. 1984, 32, 280–285. [Google Scholar] [CrossRef]
- Hastings, J.R.; Turner, R.M. Seasonal Precipitation Regimes in Baja California, Mexico. Geogr. Ann. Ser. Phys. Geogr. 1965, 47, 204–223. [Google Scholar] [CrossRef]
- Castro, R.; Martínez, J. Variabilidad espacial y temporal del campo de viento. In Dinámica Del Ecosistema Pelágico Frente a Baja California; Instituto Nacional de Ecología: Coyoacán, Mexico, 2010; p. 19. [Google Scholar]
- Romero-Centeno, R.; Zavala-Hidalgo, J.; Raga, G.B. Midsummer Gap Winds and Low-Level Circulation over the Eastern Tropical Pacific. J. Clim. 2007, 20, 3768–3784. [Google Scholar] [CrossRef] [Green Version]
- Minnich, R.A.; Vizcaino, E.F.; Dezzani, R.J. The El Niño/Southern Oscillation and Precipitation Variability in Baja California, Mexico. Atmósfera 2009, 13, 1–20. [Google Scholar]
- Arriaga-Ramírez, S.; Cavazos, T. Regional trends of daily precipitation indices in northwest Mexico and southwest United States. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Félix-Bermúdez, A.; Delgadillo-Hinojosa, F.; Huerta-Diaz, M.A.; Camacho-Ibar, V.; Torres-Delgado, E.V. Atmospheric Inputs of Iron and Manganese to Coastal Waters of the Southern California Current System: Seasonality, Santa Ana Winds, and Biogeochemical Implications. J. Geophys. Res. Oceans 2017, 122, 9230–9254. [Google Scholar] [CrossRef]
- Kim, K.H.; Choi, G.H.; Kang, C.H.; Lee, J.H.; Kim, J.Y.; Youn, Y.H.; Lee, S.R. The chemical composition of fine and coarse particles in relation with the Asian Dust events. Atmos. Environ. 2003, 37, 753–765. [Google Scholar] [CrossRef]
- Laurent, B.; Marticorena, B.; Bergametti, G.; Léon, J.F.; Mahowald, N.M. Modeling mineral dust emissions from the Sahara desert using new surface properties and soil database. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, M.R.; McDonald, E.V.; Etyemezian, V. Quantifying dust emissions from desert landforms, eastern Mojave Desert, USA. Geomorphology 2011, 135, 21–34. [Google Scholar] [CrossRef]
- Xuan, J.; Liu, G.; Du, K. Dust emission inventory in Northern China. Atmos. Environ. 2000, 34, 4565–4570. [Google Scholar] [CrossRef]
- Blunden, J.; Arndt, D.S. State of the Climate in 2015. Bull. Am. Meteorol. Soc. 2016, 97, S1–S275. [Google Scholar] [CrossRef]
- Englehart, P.J.; Douglas, A.V. Changing behavior in the diurnal range of surface air temperatures over Mexico. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Pavia, G.; Graef, F.; Reyes, J. Annual and seasonal surface air temperature trends in Mexico. Int. J. Climatol. 2009, 29, 1324–1329. [Google Scholar] [CrossRef]
- Prein, A.F.; Holland, G.J.; Rasmussen, R.M.; Clark, M.P.; Tye, M.R. Running dry: The US Southwest’s drift into a drier climate state. Geophys. Res. Lett. 2016, 43, 1272–1279. [Google Scholar] [CrossRef]
- Rodríguez-Moreno, V.M.; Bullock, S.H. Vegetation response to rainfall pulses in the Sonoran Desert as modelled through remotely sensed imageries. Int. J. Climatol. 2014, 34, 3967–3976. [Google Scholar] [CrossRef]
- Magaña, V.; Pérez, J.; Conde, C. El fenómeno del el niño y la oscilación del sur. Sus impactos en México—Revista Ciencias. Revista Ciencias UNAM 1998, 51, 14–18. [Google Scholar]
- Segovia-Zavala, J.A.; Delgadillo-Hinojosa, F.; Lares-Reyes, M.L.; Huerta-Díaz, M.A.; Muñoz-Barbosa, A.; Torres-Delgado, E.V. Atmospheric input and concentration of dissolved iron in the surface layer of the Gulf of California. Ciencias Marinas 2009, 35, 75–90. [Google Scholar] [CrossRef]
- Segovia-Zavala, J.A.; Lares, M.L.; Delgadillo-Hinojosa, F.; Tovar-Sánchez, A.; Sañudo-Wilhelmy, S.A. Dissolved iron distributions in the central region of the Gulf of California, México. Deep Sea Res. Part Oceanogr. Res. Pap. 2010, 57, 53–64. [Google Scholar] [CrossRef]
- Segovia-Zavala, J.A.; Delgadillo-Hinojosa, F.; Lares-Reyes, M.L.; Huerta-Díaz, M.A.; Muñoz-Barbosa, A.; del Angel, E.S.M.; Torres-Delgado, E.V.; Sañudo-Wilhelmy, S.A. Vertical distribution of dissolved iron, copper, and cadmium in Ballenas Channel, Gulf of California. Ciencias Marinas 2011, 37, 457–469. [Google Scholar] [CrossRef] [Green Version]
- Jickells, T.D.; An, Z.S.; Andersen, K.K.; Baker, A.R.; Bergametti, G.; Brooks, N.; Cao, J.J.; Boyd, P.W.; Duce, R.A.; Hunter, K.A.; et al. Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate. Science 2005, 308, 67–71. [Google Scholar] [CrossRef] [Green Version]
Season | San Felipe | Vizcaino | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
E | SVM (%) | T (°C) | v | Precp (mm month−1) | E | SVM (%) | T (°C) | v | Precp (mm month−1) | |
Winter | 16.08 | 12.47 | 15.2 | 2.41 | 1.56 | 69.97 | 21.87 | 15.1 | 3.25 | 1.6 |
Spring | 15.48 | 9.22 | 19.4 | 2.49 | 0.45 | 281.11 | 17.51 | 18.7 | 4.42 | 0.23 |
Summer | 17.41 | 7.18 | 26.9 | 2.62 | 0.7 | 114.62 | 15.59 | 24.7 | 3.56 | 0.67 |
Autumn | 12.92 | 9.21 | 22.1 | 2.19 | 0.56 | 102.99 | 18.07 | 21.6 | 3.43 | 1.07 |
Seasons | Zone | Mag (m s−1) | Dir | (m s−1) | (m s−1) | θ (°) |
---|---|---|---|---|---|---|
Winter | S. Felipe | 2.22 | SE | 0.61 | 0.32 | 37.97 |
Vizcaíno | 3.25 | SE | 0.64 | 0.37 | −63.51 | |
Spring | S. Felipe | 2.41 | ESE | 0.44 | 0.28 | 29.82 |
Vizcaíno | 4.37 | SSE | 0.45 | 0.31 | −83.6 | |
Summer | S. Felipe | 2.46 | ENE | 0.44 | 0.23 | 27.88 |
Vizcaíno | 3.48 | SE | 0.46 | 0.14 | −77.07 | |
Autumn | S. Felipe | 1.96 | ENE | 0.38 | 0.26 | 24.29 |
Vizcaíno | 3.43 | SSE | 0.59 | 0.27 | −61.81 |
Z-Transformed Variables | San Felipe | Vizcaíno | ||
---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | |
Z E | 0.95 | 0.01 | 0.87 | −0.39 |
Z v | 0.80 | 0.03 | 0.91 | −0.33 |
Z SVM | 0.02 | −0.75 | −0.59 | −0.73 |
Z T | 0.01 | 0.96 | 0.12 | 0.88 |
Z Precp | 0.02 | −0.35 | −0.65 | −0.17 |
Variable | Site | Mean |
---|---|---|
E () | SF | 24.05 |
Vz | 170.77 | |
v () | SF | 2.40 |
Vz | 3.66 | |
T (°C) | SF | 20.77 |
Vz | 20.05 | |
SVM (%) | SF | 10.10 |
Vz | 18.79 | |
Precp (mm month−1) | SF | 0.93 |
Vz | 1.01 |
Site | Dust Emission Flux | Wind Speed | Temperature | Soil Volumetric Moisture | Precpitation | |||||
---|---|---|---|---|---|---|---|---|---|---|
MKM | TS | MKM | TS | MKM | TS | MKM | TS | MKM | TS | |
S. Felipe | 1 | 0.31 | 1 | 0.01 | 1 | 0.03 | −1 | −0.01 | −1 | −0.01 |
Vizcaíno | 1 | 0.85 | 1 | 0.01 | 1 | 0.01 | −1 | −0.03 | −1 | −0.01 |
Site | T (°C) | SVM (%) | Precp (mm month−1) |
---|---|---|---|
E from San Felipe | 0.74 | −0.3 | −0.72 |
E from Vizcaíno | 0.51 | −0.72 | −0.41 |
E | Desert | Reference | |
---|---|---|---|
Winter | 71.98 | Vizcaíno | This Study |
15.92 | San Felipe | ||
Spring | 277.52 | Vizcaíno | |
15.58 | San Felipe | ||
Autumn | 102.77 | Vizcaíno | |
12.44 | San Felipe | ||
Summer | 113.81 | Vizcaíno | |
16.87 | San Felipe | ||
Average | 170.77 | Vizcaíno | |
24.05 | San Felipe | ||
Annual Average | 23 | San Felipe, México | [20] |
22 | Puerto Peñasco, México | ||
23.33 | Todos Santos Bay, México | [54] | |
399.04–467.54 | Sahara, Africa | [55] | |
206.6–341 | Sahel, Africa | ||
Dust Storm | 2332 | Taklimakan, China | [56] |
2592 | Gobi, China | ||
Dust Storm | 1900 | Eastern Mojave, US | [57] |
Annual Average | 174.21–226.02 | Sahara, Africa | [56] |
Dust Storm | 864 | Simpson, Australia | [12] |
Seasonal | 6.13 a, 31b, 12.05 c and 2.96 d | Gobi, China | [58] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Acuña, E.; Torres, C.R.; Delgadillo-Hinojosa, F.; Linero-Cueto, J.R.; Santamaría-del-Ángel, E.; Castro, R. The Baja California Peninsula, a Significant Source of Dust in Northwest Mexico. Atmosphere 2019, 10, 582. https://doi.org/10.3390/atmos10100582
Morales-Acuña E, Torres CR, Delgadillo-Hinojosa F, Linero-Cueto JR, Santamaría-del-Ángel E, Castro R. The Baja California Peninsula, a Significant Source of Dust in Northwest Mexico. Atmosphere. 2019; 10(10):582. https://doi.org/10.3390/atmos10100582
Chicago/Turabian StyleMorales-Acuña, Enrique, Carlos R. Torres, Francisco Delgadillo-Hinojosa, Jean R. Linero-Cueto, Eduardo Santamaría-del-Ángel, and Rubén Castro. 2019. "The Baja California Peninsula, a Significant Source of Dust in Northwest Mexico" Atmosphere 10, no. 10: 582. https://doi.org/10.3390/atmos10100582
APA StyleMorales-Acuña, E., Torres, C. R., Delgadillo-Hinojosa, F., Linero-Cueto, J. R., Santamaría-del-Ángel, E., & Castro, R. (2019). The Baja California Peninsula, a Significant Source of Dust in Northwest Mexico. Atmosphere, 10(10), 582. https://doi.org/10.3390/atmos10100582