Key Features and Adverse Weather of the Named Subtropical Cyclones over the Southwestern South Atlantic Ocean
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Methods
2.2.1. Cyclone Tracking
2.2.2. Cyclone Classification
2.2.3. Synoptic Analysis
2.2.4. Adverse Weather Conditions Caused by Subtropical Cyclones
3. Results
3.1. Trajectory and CPS
3.2. Synoptic Analysis
3.3. Adverse Weather Conditions Caused by Subtropical Cyclones
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peixoto, J.P.; Oort, A.H. Physics of Climate. Am. Inst. Phys. 1992, 173, 415–423. [Google Scholar] [CrossRef]
- Catto, J.L. Extratropical cyclone classification and its use in climate studies. Rev. Geophys. 2016, 54, 486–520. [Google Scholar] [CrossRef]
- Reboita, M.S.; Gan, M.A.; da Rocha, R.P.; Custódio, I.S. Surface Cyclones over Austral Latitudes: Part I-Bibliographic Review. Revista Brasileira de Meteorologia 2017, 32, 171–186. [Google Scholar] [CrossRef]
- Hart, R.E. A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Weather Rev. 2003, 131, 585–616. [Google Scholar] [CrossRef]
- Guishard, M.P.; Evans, J.L.; Hart, R.E. Atlantic Subtropical Storms. Part II: Climatology. J. Clim. 2009, 22, 574–3594. [Google Scholar] [CrossRef]
- Gozzo, L.F.; da Rocha, R.P.; Reboita, M.S.; Sugahara, S. Subtropical cyclones over the southwestern South Atlantic: Climatological aspects and case study. J. Clim. 2014, 27, 8543–8562. [Google Scholar] [CrossRef]
- Gray, W.M. Global view of the origin of tropical disturbances and storms. Mon. Weather Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- da Rocha, R.P.; Reboita, M.S.; Gozzo, L.F.; Dutra, L.M.M.; de Jesus, E.M. Subtropical cyclones over the oceanic basins: A review. Ann. N. Y. Acad. Sci. 2018, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Holland, G.J.; McBride, J.L.; Smith, R.K.; Jasper, D.; Keenan, T.D. The BMRC Australian monsoon experiment: AMEX. Bull. Am. Meteorol. Soc. 1986, 67, 1466–1472. [Google Scholar] [CrossRef]
- Guishard, M.P. Atlantic Subtropical Storms: Climatology and Characteristics. Ph.D. Thesis, Pennsylvania State University, State College, PA, USA, 2006. [Google Scholar]
- Dias Pinto, J.R.; Reboita, M.S.; da Rocha, R.P. Synoptic and dynamical analysis of subtropical cyclone Anita (2010) and its potential for tropical transition over the South Atlantic Ocean. J. Geophys. Res. Atmos. 2013, 118, 870–883. [Google Scholar] [CrossRef]
- Tous, M.; Romero, R. Meteorological environments associated with medicane development. Int. J. Climatol. 2013, 33, 1–14. [Google Scholar] [CrossRef]
- Cavicchia, L.; Von Storch, H.; Gualdi, S. A long-term climatology of medicanes. Clim. Dyn. 2014, 43, 1183–1195. [Google Scholar] [CrossRef]
- Mctaggart-Cowan, R.; Bosart, L.F.; Davis, C.A.; Atallah, E.H.; Gyakum, J.R.; Emanuel, K.A. Analysis of Hurricane Catarina (2004). Mon. Weather Rev. 2006, 134, 3029–3053. [Google Scholar] [CrossRef]
- Pezza, A.B.; Simmonds, I. The First South Atlantic Hurricane: Unprecedented Blocking, Low Shear and Climate Change. Geophys. Res. Lett. 2005, 32, L15712. [Google Scholar] [CrossRef]
- Iwabe, C.M.N.; Reboita, M.S.; Camargo, R. Estudo de caso de uma situação atmosférica entre 12 e 19 de setembro de 2008, com algumas características semelhantes ao evento Catarina. Revista Brasileira de Meteorologia 2011, 26, 67–84. [Google Scholar] [CrossRef] [Green Version]
- Dutra, L.M.M.; daRocha, R.P.; Lee, R.W. Structure and evolution of subtropical cyclone Anita as evaluated by heat and vorticity budgets. Q. J. R. Meteorol. Soc. 2017, 143, 1539–1553. [Google Scholar] [CrossRef]
- Reboita, M.S.; Gan, M.A.; daRocha, R.P.; Custódio, I.S. Surface Cyclones over Austral Latitudes: Part II Cases Study. Revista Brasileira de Meteorologia 2017, 32, 509–542. [Google Scholar] [CrossRef]
- Evans, J.L.; Braun, A. A climatology of subtropical cyclones in the South Atlantic. J. Clim. 2012, 25, 7328–7340. [Google Scholar] [CrossRef]
- NORMAM 19/DHN. Normas da autoridade marítima para as atividade de Meteorologia Marítima. 2011. Available online: https://www.marinha.mil.br/dhn/sites/www.marinha.mil.br.dhn/files/normam/NORMAN-19-REV-1--Ed2018-CHM.pdf (accessed on 12 November 2018).
- Hersbach, H.; Dee, D. ERA5 reanalysis is in production. ECMWF Newsl. 2016, 147, 7. [Google Scholar]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Ek, M. The NCEP climate forecast system version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T. TRMM and Other Data Precipitation Data Set Documentation; NASA: Greenbelt, MD, USA, 2013; Volume 28.
- Knapp, K.R. NOAA CDR Program; NOAA Climate Data Record (CDR) of Gridded Satellite Data from ISCCP B1 (GridSat-B1) Infrared Channel Brightness Temperature, Version 2; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2014.
- Sinclair, M.R. An objective cyclone climatology for the Southern Hemisphere. Mon. Weather Rev. 1994, 122, 2239–2256. [Google Scholar] [CrossRef]
- Hawcroft, M.K.; Shaffrey, L.C.; Hodges, K.I.; Dacre, H.F. How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett. 2012, 39, L24809. [Google Scholar] [CrossRef]
- Reboita, M.S.; daRocha, R.P.; de Souza, M.R.; Llopart, M. Extratropical cyclones over the southwestern South Atlantic Ocean: HadGEM2-ES and RegCM4 projections. Int. J. Climatol. 2018, 38, 2866–2879. [Google Scholar] [CrossRef]
- Reboita, M.S.; da Rocha, R.P.; Ambrizzi, T.; Sugahara, S. South Atlantic Ocean Cyclogenesis Climatology Simulated by Regional Climate Model (RegCM3). Clim. Dyn. 2010, 35, 1331–1347. [Google Scholar] [CrossRef]
- Palmén, E.H.; Newton, C.W. Atmospheric Circulation Systems: Their Structure and Physical Interpretation; Academic Press: Cambridge, MA, USA, 1969; Volume 13. [Google Scholar]
- Nieto, R.; Sprenger, M.; Wernli, H.; Trigo, R.M.; Gimeno, L. Identification and Climatology of Cut-off Lows near the Tropopause. Ann. N. Y. Acad. Sci. 2008, 1146, 256–290. [Google Scholar] [CrossRef] [PubMed]
- COMET. Satellite Feature Identification: Blocking Patterns; University Corporation for Atmospheric Research: Boulder, CO, USA, 2009. [Google Scholar]
- DeMaria, M. The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci. 1996, 53, 2076–2088. [Google Scholar] [CrossRef]
- Montgomery, M.T.; Farrell, B.F. Tropical cyclone formation. J. Atmos. Sci. 1993, 50, 285–310. [Google Scholar] [CrossRef]
- Zhang, F.; Sippel, J.A. Effects of moist convection on hurricane predictability. J. Atmos. Sci. 2009, 66, 1944–1961. [Google Scholar] [CrossRef]
- Emanuel, K.A. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 1986, 43, 585–604. [Google Scholar] [CrossRef]
- Emanuel, K.A. The Maximum Intensity of Hurricanes. J. Atmos. Sci. 1988, 45, 1143–1155. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K.A. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci. 1995, 52, 3969–3976. [Google Scholar] [CrossRef]
- Bister, M.; Emanuel, K.E. Low frequency variability of tropical cyclone potential intensity: 1. Interannual to interdecadal variability. J. Geophys. Res. Atmos. 2012, 107, 1–15. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, M.; Dickinson, R.E. Intercomparison of Bulk Aerodynamic Algorithms for the Computation of Sea Surface Fluxes Using TOGA COARE and TAO Data. J. Clim. 1998, 11, 2628–2644. [Google Scholar] [CrossRef]
- Cione, J.J.; Uhlhorn, E.W. Sea surface temperature variability in hurricanes: Implications with Respect to Intensity Change. Mon. Weather Rev. 2003, 131, 1783–1796. [Google Scholar] [CrossRef]
- Kuo, Y.H.; Low-Nam, S.; Reed, R.J. Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic. Mon. Weather Rev. 1991, 119, 457–476. [Google Scholar] [CrossRef]
- Hogsett, W.; Zhang, D.L. Numerical simulation of Hurricane Bonnie (1998). Part III: Energetics. J. Atmos. Sci. 2009, 66, 2678–2696. [Google Scholar] [CrossRef]
- Ma, Z.; Fei, J.; Huang, X.; Cheng, X. The effects of ocean feedback on tropical cyclone energetics under idealized air-sea interaction conditions. J. Geophys. Res. Atmos. 2013, 118, 9778–9788. [Google Scholar] [CrossRef] [Green Version]
- Mei, W.; Pasquero, C.; Primeau, F. The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett. 2012, 39, L07801. [Google Scholar] [CrossRef]
- Reboita, M.S.; da Rocha, R.P.; Ambrizzi, T.; Caetano, E. An assessment of the latent and sensible heat flux on the simulated regional climate over Southwestern South Atlantic Ocean. Clim. Dyn. 2010, 34, 873–889. [Google Scholar] [CrossRef]
- Gozzo, L.F.; da Rocha, R.P.; Gimeno, L.; Drumond, A. Climatology and numerical case study of moisture sources associated with subtropical cyclogenesis over the southwestern Atlantic Ocean. J. Geophys. Res.-Atmos. 2017, 122, 5636–5653. [Google Scholar] [CrossRef]
- Fritz, C.; Wang, Z. Water Vapor Budget in a Developing Tropical Cyclone and Its Implication for Tropical Cyclone Formation. J. Atmos. Sci. 2014, 71, 4321–4332. [Google Scholar] [CrossRef]
- Zhu, Y.; Newell, R.E. Atmospheric rivers and bombs. Geophys. Res. Lett. 1994, 21, 1999–2002. [Google Scholar] [CrossRef]
- Zhang, Z.; Ralph, F.M.; Zheng, M. The Relationship between Extratropical Cyclone Strength and Atmospheric River Intensity and Position. Geophys. Res. Lett. 2018. [Google Scholar] [CrossRef]
- Simpson, R.H. Evolution of the Kona storm a subtropical cyclone. J. Meteorol. 1952, 9, 24–35. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Shea, D.J. Atlantic hurricanes and natural variability in 2005. Geophys. R. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Glenn, S.M.; Miles, T.N.; Seroka, G.N.; Xu, Y.; Forney, R.K.; Yu, F.; Kohut, J. Stratified coastal ocean interactions with tropical cyclones. Nat. Commun. 2016, 7, 10887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scoccimarro, E.; Fogli, P.G.; Reed, K.A.; Gualdi, S.; Masina, S.; Navarra, A. Tropical cyclone interaction with the ocean: The role of high-frequency (subdaily) coupled processes. J. Clim. 2017, 30, 145–162. [Google Scholar] [CrossRef]
- Hawkins, H.F.; Imbembo, S.M. The structure of a small, intense hurricane-Inez, 1966. Mon. Weather Rev. 1976, 104, 418–442. [Google Scholar] [CrossRef]
- Hawkins, H.F.; Rubsam, D.T. Hurricane Hilda, 1964. Mon. Weather Rev. 1968, 96, 617–663. [Google Scholar] [CrossRef]
- Kidder, S.Q.; Goldberg, M.D.; Zehr, R.M.; Demaria, M.; Purdom, J.F.W.; Velden, C.S.; Grody, N.C.; Kusselson, S.J. Satellite analysis of tropical cyclones using the Advanced Microwave Sounding Unit (AMSU). Bull. Am. Meteorol. Soc. 2000, 81, 1241–1259. [Google Scholar] [CrossRef]
- Brasiliense, C.S.; Dereczynski, C.P.; Satyamurty, P.; Chou, S.C.; da Silva Santos, V.R.; Calado, R.N. Synoptic analysis of an intense rainfall event in Paraíba do Sul river basin in southeast Brazil. Meteorol. Appl. 2018, 25, 66–77. [Google Scholar] [CrossRef]
- Wainer, I.; Taschetto, A.; Soares, J.; de Oliveira, A.P.; Otto-Bliesner, B.; Brady, E. Intercomparison of heat fluxes in the South Atlantic. Part I: The seasonal cycle. J. Clim. 2003, 16, 706–714. [Google Scholar] [CrossRef]
Variables | Horizontal Resolution | Source |
---|---|---|
Air temperature (K), relative humidity (%), geopotential (m2·s−2), wind componemts (m·s−1) from 1000 hPa to 30 hPa every 6 h | 0.3° × 0.3° | ERA5/ECMWF https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 Hersbach and Dee (2016) |
Near-surface latent (LH) and sensible (SH) heat flux (W·m−2), sea surface temperature (K), 10-m wind (m·s−1) and mean sea-level pressure (hPa) every 3 h | ||
Mean sea-level pressure (hPa) and winds at 10-m and 925 hPa every 6 h | 0.5° × 0.5° | CFSR/NCEP https://rda.ucar.edu/datasets/ds093.1/ Saha et al. (2014) |
Precipitation (mm) every 3 h | 0.25° × 0.25° | TRMM-3B42 https://disc2.gesdisc.eosdis.nasa.gov/data//TRMM_RT/TRMM_3B42RT.7/ Huffman and Bolvin (2015) |
Brightness temperature near 11 microns (K) every 3 h | 0.07° × 0.07° | GridSat-B1/NOAA https://www.ncdc.noaa.gov/gridsat/ Knapp et al. (2014) |
Cyclone | Date of Genesis (Date of Cyclolysis) | Initial Position | Lifetime (Days) | Traveled Distances (km) | ||
---|---|---|---|---|---|---|
Latitude | Longitude | Sum of the Distances at Every 6 h | From the First to Last Position | |||
Anita | 06Z 4 Mar 2010 (00Z 13 Mar 2010) | −19.75 | −34.75 | 9 | 5361 | 2674 |
Arani | 12Z 8 Mar 2011 (18Z 17 Mar 2011) | −24.00 | −41.25 | 9 | 3769 | 1725 |
Bapo | 18Z 4 Fev 2015 (06Z 10 Fev 2015) | −26.00 | −43.50 | 6 | 3395 | 2622 |
Cari | 00Z 8 Mar 2015 (18Z 17 Mar 2015) | −26.25 | −45.00 | 10 | 3300 | 1441 |
Deni | 00Z 15 Nov 2016 (00Z 18 Nov 2016) | −23.00 | −42.50 | 3 | 2031 | 1766 |
Eçaí | 00Z 4 Dez 2016 (18Z 6 Dez 2016) | −26.50 | −47.50 | 3 | 1267 | 1156 |
Cyclone | Genesis (Maturity) | SST (°C) | SST−Tair (°C) | LH (W·m−2) | LH + SH (W·m−2) |
---|---|---|---|---|---|
Anita | 00Z06Mar2010 (12Z09Mar2010) | 28.6 (24.7) | 2.0 (0.9) | 180.8 (110.4) | 197.5 (121.3) |
Arani | 12Z14Mar2011 (12Z15Mar2011) | 26.8 (26.6) | 1.1 (0.9) | 137.8 (103.6) | 151.8 (111.5) |
Bapo | 06Z05Feb2015 (06Z07Feb2015) | 26.0 (22.8) | 1.4 (0.3) | 108.1 (96.4) | 119.6 (100.3) |
Cari | 00Z10Mar2015 (00Z12Mar2015) | 26.1 (25.0) | 1.1 (0.6) | 102.6 (118.3) | 111.8 (126.4) |
Deni | 06Z15Nov2015 (12Z17Nov2015) | 23.3 (19.9) | 0.5 (−0.5) | 95.1 (33.9) | 99.6 (25.2) |
Eçaí | 00Z04Dec2016 (06Z05Dec2016) | 22.5 (21.7) | 0.4 (1.1) | 94.1 (172.1) | 96.2 (191.8) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reboita, M.S.; Da Rocha, R.P.; Oliveira, D.M.d. Key Features and Adverse Weather of the Named Subtropical Cyclones over the Southwestern South Atlantic Ocean. Atmosphere 2019, 10, 6. https://doi.org/10.3390/atmos10010006
Reboita MS, Da Rocha RP, Oliveira DMd. Key Features and Adverse Weather of the Named Subtropical Cyclones over the Southwestern South Atlantic Ocean. Atmosphere. 2019; 10(1):6. https://doi.org/10.3390/atmos10010006
Chicago/Turabian StyleReboita, Michelle Simões, Rosmeri Porfírio Da Rocha, and Débora Martins de Oliveira. 2019. "Key Features and Adverse Weather of the Named Subtropical Cyclones over the Southwestern South Atlantic Ocean" Atmosphere 10, no. 1: 6. https://doi.org/10.3390/atmos10010006
APA StyleReboita, M. S., Da Rocha, R. P., & Oliveira, D. M. d. (2019). Key Features and Adverse Weather of the Named Subtropical Cyclones over the Southwestern South Atlantic Ocean. Atmosphere, 10(1), 6. https://doi.org/10.3390/atmos10010006