Molecular and Genetic Biomarkers in Prostate Cancer Active Surveillance: Recent Developments and Future Perspectives
Abstract
1. Introduction
2. Context for Biomarkers: Long-Term Oncological Outcomes of AS
3. Current Challenges in AS: Opportunities for Biomarkers
3.1. Patient Selection and Uptake of AS: The Misclassification Problem
3.2. Predicting Disease Progression During AS
| Model/Tool | Inclusion Criteria for Model Development Cohort | Pre-Biopsy MRI in Model Development Cohort | Disease Progression Endpoint | Model Performance |
|---|---|---|---|---|
| Canary model [57] | GG1 | Not specified | Time from confirmatory biopsy to reclassification (GG2 or higher on subsequent biopsy) | AUC 0.70 (95% CI: 0.63–0.76) |
| John Hopkins [51] | Epstein criteria for very-low-risk prostate cancer | No | Radical prostatectomy pathological Gleason Score > 6 | AUC 0.74 (95% CI 0.66–0.81) |
| PRIAS [55] | GG1 (on systematic biopsy) | No | Upgrading to GG2 or higher on repeat biopsy | AUC 0.6–0.7 (95% CI not reported) |
| STRATCANS [56] | CPG 1–2 | Most (16% did not have MRI) | Progression to ≥CPG3 | AUC 0.74 (95% CI: 0.63–0.85) In 5-year follow-up cohort (n = 297) c-index 0.724 (95% CI 0.694–0.793) on internal validation cohort (n = 883) c-index 0.845 (95%CI 0.712–0.958) on external validation cohort (n = 151) |
3.3. Heterogeneity in AS Clinical Practice
4. Improving Patient Selection to AS by Reducing Misclassification at Diagnosis
4.1. Blood Biomarkers
4.2. Urine Biomarkers
4.3. Tissue Biomarkers
5. Improving the Prediction of True Disease Progression During AS
5.1. Blood Biomarkers
5.2. Urine Biomarkers
5.3. Tissue Biomarkers
6. Conclusions
7. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AS | Active surveillance |
| AUA | American Urological Association |
| AUC | Area under the curve |
| BMI | Body mass index |
| CaPSURE | Cancer of the Prostate Strategic Urologic Research Endeavour |
| CAPRA | Cancer of the Prostate Risk Assessment |
| CCP | Cell Cycle Progression score |
| CI | Confidence interval |
| CPG | Cambridge Prognostic Group |
| DNA | Deoxyribonucleic acid |
| EAU | European Association of Urology |
| EPI | ExoDx Prostate Intelliscore |
| EV | Extracellular vesicle |
| FOI | Freedom of information |
| GAP3 | Global Action Plan 3 (Movember Foundation consortium) |
| GG | Gleason Grade group |
| GPS | Genomic Prostate Score |
| GS | Gleason Score |
| hK2 | Human kallikrein-related peptidase 2 |
| HR | Hazard ratio |
| IQR | Interquartile range |
| ISUP | International Society of Urological Pathology |
| MIC1 | Macrophage inhibitory cytokine-1 |
| mpMRI | Multiparametric magnetic resonance imaging |
| MSMB | Microseminoprotein beta |
| NCCN | National Comprehensive Cancer Network |
| NICE | National Institute for Health and Care Excellence |
| NPCA | National Prostate Cancer Audit |
| NPV | Negative predictive value |
| OR | Odds ratio |
| PASS | Prostate Active Surveillance Study |
| PCA3 | Prostate Cancer Antigen 3 |
| PCUK | Prostate Cancer UK |
| PHI | Prostate Health Index |
| PI-RADS | Prostate Imaging Reporting and Data System |
| PRIAS | Prostate Cancer Research International Active Surveillance study |
| PSA | Prostate-specific antigen |
| PUR | Prostate Urine Risk |
| RCT | Randomised controlled trial |
| RNA | Ribonucleic acid |
| SD | Standard deviation |
| SEER | Surveillance, Epidemiology and End Results |
| STHLM3 | Stockholm3 |
| STRATCANS | Stratified Cancer Surveillance |
| T-stage | Tumour stage |
References
- Lardas, M.; Liew, M.; van den Bergh, R.C.; De Santis, M.; Bellmunt, J.; Van den Broeck, T.; Cornford, P.; Cumberbatch, M.G.; Fossati, N.; Gross, T.; et al. Quality of Life Outcomes after Primary Treatment for Clinically Localised Prostate Cancer: A Systematic Review. Eur. Urol. 2017, 72, 869–885. [Google Scholar] [CrossRef] [PubMed]
- Johansson, E.; Steineck, G.; Holmberg, L.; Johansson, J.E.; Nyberg, T.; Ruutu, M.; Bill-Axelson, A. Long-term quality-of-life outcomes after radical prostatectomy or watchful waiting: The Scandinavian Prostate Cancer Group-4 randomised trial. Lancet Oncol. 2011, 12, 891–899. [Google Scholar] [CrossRef] [PubMed]
- James Lind Alliance: Priority Setting Partnerships. Prostate Cancer Top 10 Priorities; JLA: Southampton, UK, 2010; Available online: https://www.jla.nihr.ac.uk/priority-setting-partnerships/prostate-cancer#tab-28091 (accessed on 10 December 2025).
- Bruinsma, S.M.; Roobol, M.J.; Carroll, P.R.; Klotz, L.; Pickles, T.; Moore, C.M.; Gnanapragasam, V.J.; Villers, A.; Rannikko, A.; Valdagni, R.; et al. Semantics in active surveillance for men with localized prostate cancer—Results of a modified Delphi consensus procedure. Nat. Rev. Urol. 2017, 14, 312–322. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence. Prostate Cancer Diagnosis and Management; NICE Guideline NG131; NICE: London, UK, 2019; Available online: https://www.nice.org.uk/guidance/ng131/resources/prostate-cancer-diagnosis-and-management-pdf-66141714312133 (accessed on 10 December 2025).
- EAU Guidelines on Prostate Cancer. Presented at the EAU Annual Congress, Madrid, Spain, 21–24 March 2025. ISBN 978-94-92671-29-5. Available online: https://uroweb.org/guidelines/urological-infections/chapter/citation-information (accessed on 10 December 2025).
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Prostate Cancer, Version 4.2026; NCCN: Philadelphia, PA, USA, 2025. Available online: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (accessed on 10 December 2025).
- Naranjo, A.E.L.; Blake, E.; Hewett-Abbott, G.; Seggie, A. Prostate Cancer Active Surveillance: Results and Policy Recommendations Following a UK Freedom of Information (FOI) Request. 2025. Available online: https://prostatecanceruk.org/media/plwi2fdx/active-surveillance-foi-policy-report_august_2025.pdf (accessed on 10 December 2025).
- Kouspou, M.M.; Fong, J.E.; Brew, N.; Hsiao, S.T.F.; Davidson, S.L.; Choyke, P.L.; Crispino, T.; Jain, S.; Jenster, G.W.; Knudsen, B.S.; et al. The Movember Prostate Cancer Landscape Analysis: An assessment of unmet research needs. Nat. Rev. Urol. 2020, 17, 499–512. [Google Scholar] [CrossRef]
- Vakili, S.; Beheshti, I.; Barzegar Behrooz, A.; Łos, M.J.; Vitorino, R.; Ghavami, S. Transforming Prostate Cancer Care: Innovations in Diagnosis, Treatment, and Future Directions. Int. J. Mol. Sci. 2025, 26, 5386. [Google Scholar] [CrossRef]
- NHS England. Personalised Follow-Up; NHS: Leeds, UK; Available online: https://www.england.nhs.uk/outpatient-transformation-programme/personalised-follow-up/ (accessed on 10 December 2025).
- Getting It Right First Time (GIRFT). Urology Outpatient Transformation: A Practical Guide to Delivery; GIRFT: London, UK, 2022; Available online: https://www.gettingitrightfirsttime.co.uk/wp-content/uploads/2022/01/Urology_2022-01-12_Guidance_Outpatient-transformation.pdf (accessed on 10 December 2025).
- NHS England. Outpatient Recovery and Transformation Programme; NHS: Leeds, UK, 2022; Available online: https://www.england.nhs.uk/outpatient-transformation-programme/ (accessed on 10 December 2025).
- NHS England. Digital Transformation; NHS: Leeds, UK, 2025; Available online: https://www.england.nhs.uk/digitaltechnology/ (accessed on 10 December 2025).
- Dall’Era, M.A.; Konety, B.R.; Cowan, J.E.; Shinohara, K.; Stauf, F.; Cooperberg, M.R.; Meng, M.V.; Kane, C.J.; Perez, N.; Master, V.A.; et al. Active surveillance for the management of prostate cancer in a contemporary cohort. Cancer 2008, 112, 2664–2670. [Google Scholar] [CrossRef]
- Welty, C.J.; Cowan, J.E.; Nguyen, H.; Shinohara, K.; Perez, N.; Greene, K.L.; Chan, J.M.; Meng, M.V.; Simko, J.P.; Cooperberg, M.R.; et al. Extended followup and risk factors for disease reclassification in a large active surveillance cohort for localized prostate cancer. J. Urol. 2015, 193, 807–811. [Google Scholar] [CrossRef]
- Klotz, L.; Vesprini, D.; Sethukavalan, P.; Jethava, V.; Zhang, L.; Jain, S.; Yamamoto, T.; Mamedov, A.; Loblaw, A. Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J. Clin. Oncol. 2015, 33, 272–277. [Google Scholar] [CrossRef]
- Bokhorst, L.P.; Valdagni, R.; Rannikko, A.; Kakehi, Y.; Pickles, T.; Bangma, C.H.; Roobol, M.J. A Decade of Active Surveillance in the PRIAS Study: An Update and Evaluation of the Criteria Used to Recommend a Switch to Active Treatment. Eur. Urol. 2016, 70, 954–960. [Google Scholar] [CrossRef]
- Godtman, R.A.; Holmberg, E.; Khatami, A.; Pihl, C.G.; Stranne, J.; Hugosson, J. Long-term Results of Active Surveillance in the Göteborg Randomized, Population-based Prostate Cancer Screening Trial. Eur. Urol. 2016, 70, 760–766. [Google Scholar] [CrossRef]
- Tosoian, J.J.; Mamawala, M.; Epstein, J.I.; Landis, P.; Macura, K.J.; Simopoulos, D.N.; Carter, H.B.; Gorin, M.A. Active Surveillance of Grade Group 1 Prostate Cancer: Long-term Outcomes from a Large Prospective Cohort. Eur. Urol. 2020, 77, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, S.; Benfante, N.; Alvim, R.; Sjoberg, D.D.; Vickers, A.; Reuter, V.E.; Fine, S.W.; Vargas, H.A.; Wiseman, M.; Mamoor, M.; et al. Long-Term Outcomes of Active Surveillance for Prostate Cancer: The Memorial Sloan Kettering Cancer Center Experience. J. Urol. 2020, 203, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Cooley, L.F.; Emeka, A.A.; Meyers, T.J.; Cooper, P.R.; Lin, D.W.; Finelli, A.; Eastham, J.A.; Logothetis, C.J.; Marks, L.S.; Vesprini, D.; et al. Factors Associated with Time to Conversion from Active Surveillance to Treatment for Prostate Cancer in a Multi-Institutional Cohort. J. Urol. 2021, 206, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Metcalfe, C.; Davis, M.; Turner, E.L.; Martin, R.M.; Young, G.J.; Walsh, E.I.; Bryant, R.J.; et al. Fifteen-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N. Engl. J. Med. 2023, 388, 1547–1558. [Google Scholar] [CrossRef]
- Herlemann, A.; Cowan, J.E.; Washington, S.L., 3rd; Wong, A.C.; Broering, J.M.; Carroll, P.R.; Cooperberg, M.R. Long-term Prostate Cancer-specific Mortality After Prostatectomy, Brachytherapy, External Beam Radiation Therapy, Hormonal Therapy, or Monitoring for Localized Prostate Cancer. Eur. Urol. 2024, 85, 565–573. [Google Scholar] [CrossRef]
- Leclercq, L.; Bastide, C.; Lechevallier, E.; Walz, J.; Charvet, A.L.; Gondran-Tellier, B.; Campagna, J.; Savoie, P.H.; Long-Depaquit, T.; Daniel, L.; et al. Active surveillance of low-grade prostate cancer using the SurACaP Criteria: A multi-institutional series with a median follow-up of 10years. Fr. J. Urol. 2024, 34, 102571. [Google Scholar] [CrossRef]
- Newcomb, L.F.; Schenk, J.M.; Zheng, Y.; Liu, M.; Zhu, K.; Brooks, J.D.; Carroll, P.R.; Dash, A.; de la Calle, C.M.; Ellis, W.J.; et al. Long-Term Outcomes in Patients Using Protocol-Directed Active Surveillance for Prostate Cancer. JAMA 2024, 331, 2084–2093. [Google Scholar] [CrossRef]
- Tohi, Y.; Sahrmann, J.M.; Arbet, J.; Kato, T.; Lee, L.S.; Peacock, M.; Ginsburg, K.; Pavlovich, C.; Carroll, P.; Bangma, C.H.; et al. De-escalation of Monitoring in Active Surveillance for Prostate Cancer: Results from the GAP3 Consortium. Eur. Urol. Oncol. 2025, 8, 347–354. [Google Scholar] [CrossRef]
- Selvadurai, E.D.; Singhera, M.; Thomas, K.; Mohammed, K.; Woode-Amissah, R.; Horwich, A.; Huddart, R.A.; Dearnaley, D.P.; Parker, C.C. Medium-term outcomes of active surveillance for localised prostate cancer. Eur. Urol. 2013, 64, 981–987. [Google Scholar] [CrossRef]
- Bruinsma, S.M.; Zhang, L.; Roobol, M.J.; Bangma, C.H.; Steyerberg, E.W.; Nieboer, D.; Van Hemelrijck, M. The Movember Foundation’s GAP3 cohort: A profile of the largest global prostate cancer active surveillance database to date. BJU Int. 2018, 121, 737–744. [Google Scholar] [CrossRef]
- Bangma, C.; Doan, P.; Zhu, L.; Remmers, S.; Nieboer, D.; Helleman, J.; Roobol, M.J.; Sugimoto, M.; Chung, B.H.; Lee, L.S.; et al. Has Active Surveillance for Prostate Cancer Become Safer? Lessons Learned from a Global Clinical Registry. Eur. Urol. Oncol. 2024, 8, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Bruinsma, S.M.; Nieboer, D.; Roobol, M.J.; Bangma, C.H.; Verbeek, J.F.M.; Gnanapragasam, V.; Van Hemelrijck, M.; Frydenberg, M.; Lee, L.S.; Valdagni, R.; et al. Risk-Based Selection for Active Surveillance: Results of the Movember Foundation’s Global Action Plan Prostate Cancer Active Surveillance (GAP3) Initiative. J. Urol. 2021, 206, 62–68. [Google Scholar] [CrossRef]
- Remmers, S.; Helleman, J.; Nieboer, D.; Trock, B.; Hyndman, M.E.; Moore, C.M.; Gnanapragasam, V.; Shiong Lee, L.; Elhage, O.; Klotz, L.; et al. Active Surveillance for Men Younger than 60 Years or with Intermediate-risk Localized Prostate Cancer. Descriptive Analyses of Clinical Practice in the Movember GAP3 Initiative. Eur. Urol. Open Sci. 2022, 41, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, K.; Santaolalla, A.; Helleman, J.; Carroll, P.; Ha Chung, B.; Shiong Lee, L.; Perry, A.; Rubio-Briones, J.; Sugimoto, M.; Trock, B.; et al. Comparison of Characteristics, Follow-up and Outcomes of Active Surveillance for Prostate Cancer According to Ethnicity in the GAP3 Global Consortium Database. Eur. Urol. Open Sci. 2021, 34, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Eastham, J.A.; Auffenberg, G.B.; Barocas, D.A.; Chou, R.; Crispino, T.; Davis, J.W.; Eggener, S.; Horwitz, E.M.; Kane, C.J.; Kirkby, E.; et al. Clinically localized prostate cancer: AUA/ASTRO guideline, part I: Introduction, risk assessment, staging, and risk-based management. J. Urol. 2022, 208, 10–18. [Google Scholar] [CrossRef]
- D’Amico, A.V.; Whittington, R.; Malkowicz, S.B.; Schultz, D.; Blank, K.; Broderick, G.A.; Tomaszewski, J.E.; Renshaw, A.A.; Kaplan, I.; Beard, C.J.; et al. Biochemical Outcome After Radical Prostatectomy, External Beam Radiation Therapy, or Interstitial Radiation Therapy for Clinically Localized Prostate Cancer. JAMA 1998, 280, 969–974. [Google Scholar] [CrossRef]
- Gnanapragasam, V.J.; Bratt, O.; Muir, K.; Lee, L.S.; Huang, H.H.; Stattin, P.; Lophatananon, A. The Cambridge Prognostic Groups for improved prediction of disease mortality at diagnosis in primary non-metastatic prostate cancer: A validation study. BMC Med. 2018, 16, 31. [Google Scholar] [CrossRef]
- Parry, M.G.; Cowling, T.E.; Sujenthiran, A.; Nossiter, J.; Berry, B.; Cathcart, P.; Aggarwal, A.; Payne, H.; van der Meulen, J.; Clarke, N.W.; et al. Risk stratification for prostate cancer management: Value of the Cambridge Prognostic Group classification for assessing treatment allocation. BMC Med. 2020, 18, 114. [Google Scholar] [CrossRef]
- NPCA. National Prostate Cancer Audit: State of the Nation Report; NPCA: London, UK, 2025. Available online: https://www.npca.org.uk/wp-content/uploads/2025/01/NPCA-State-of-the-Nation-Report-2024_v2.pdf (accessed on 10 December 2025).
- Cooperberg, M.R.; Meeks, W.; Fang, R.; Gaylis, F.D.; Catalona, W.J.; Makarov, D.V. Time Trends and Variation in the Use of Active Surveillance for Management of Low-risk Prostate Cancer in the US. JAMA Netw. Open 2023, 6, e231439. [Google Scholar] [CrossRef]
- Thurtle, D.R.; Greenberg, D.C.; Lee, L.S.; Huang, H.H.; Pharoah, P.D.; Gnanapragasam, V.J. Individual prognosis at diagnosis in nonmetastatic prostate cancer: Development and external validation of the PREDICT Prostate multivariable model. PLoS Med. 2019, 16, e1002758. [Google Scholar] [CrossRef]
- Devos, G.; Joniau, S. PREDICT Prostate, a useful tool in men with low- and intermediate-risk prostate cancer who are hesitant between conservative management and active treatment. BMC Med. 2020, 18, 213. [Google Scholar] [CrossRef]
- Pandiaraja, M.; Pryle, I.; West, L.; Gardner, L.; Shallcross, O.; Tay, J.; Shah, N.; Gnanapragasam, V.; Lamb, B.W. Utilisation and impact of predict prostate on decision-making among clinicians and patients in a specialist tertiary referral centre: A retrospective cohort study. BJUI Compass 2024, 5, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Thurtle, D.; Jenkins, V.; Freeman, A.; Pearson, M.; Recchia, G.; Tamer, P.; Leonard, K.; Pharoah, P.; Aning, J.; Madaan, S.; et al. Clinical Impact of the Predict Prostate Risk Communication Tool in Men Newly Diagnosed with Nonmetastatic Prostate Cancer: A Multicentre Randomised Controlled Trial. Eur. Urol. 2021, 80, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Mac Curtain, B.M.; Daly, K.; Calpin, G.; Collins, E.; Deshwal, A.; Lynch, O.; Qian, W.; O’Mahony, A.; Temperley, H.C.; Mac Curtain, R.D.; et al. Reclassification of prostate cancer on first confirmatory prostate biopsy in men under active surveillance: A systematic review and meta-analysis. Cent. Eur. J. Urol. 2025, 78, 125–136. [Google Scholar] [CrossRef]
- Gabb, H.; Gnanapragasam, V.J. Value of a confirmatory re-biopsy as part of a modern risk stratified cancer surveillance programme for early prostate cancer. BJUI Compass 2024, 5, 662–664. [Google Scholar] [CrossRef]
- Kasivisvanathan, V.; Rannikko, A.S.; Borghi, M.; Panebianco, V.; Mynderse, L.A.; Vaarala, M.H.; Briganti, A.; Budäus, L.; Hellawell, G.; Hindley, R.G.; et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N. Engl. J. Med. 2018, 378, 1767–1777. [Google Scholar] [CrossRef]
- van der Leest, M.; Cornel, E.; Israël, B.; Hendriks, R.; Padhani, A.R.; Hoogenboom, M.; Zamecnik, P.; Bakker, D.; Setiasti, A.Y.; Veltman, J.; et al. Head-to-head Comparison of Transrectal Ultrasound-guided Prostate Biopsy Versus Multiparametric Prostate Resonance Imaging with Subsequent Magnetic Resonance-guided Biopsy in Biopsy-naïve Men with Elevated Prostate-specific Antigen: A Large Prospective Multicenter Clinical Study. Eur. Urol. 2019, 75, 570–578. [Google Scholar] [CrossRef]
- Batouche, A.O.; Czeizler, E.; Lehto, T.P.; Erickson, A.; Shadbahr, T.; Laajala, T.D.; Pohjonen, J.; Vickers, A.J.; Mirtti, T.; Rannikko, A.S. MRI-Targeted Prostate Biopsy Introduces Grade Inflation and Overtreatment. medRxiv 2024. [Google Scholar] [CrossRef]
- Tomer, A.; Nieboer, D.; Roobol, M.J.; Steyerberg, E.W.; Rizopoulos, D. Personalized Schedules for Surveillance of Low-Risk Prostate Cancer Patients. Biometrics 2018, 75, 153–162. [Google Scholar] [CrossRef]
- Cooperberg, M.R.; Zheng, Y.; Faino, A.V.; Newcomb, L.F.; Zhu, K.; Cowan, J.E.; Brooks, J.D.; Dash, A.; Gleave, M.E.; Martin, F.; et al. Tailoring Intensity of Active Surveillance for Low-Risk Prostate Cancer Based on Individualized Prediction of Risk Stability. JAMA Oncol. 2020, 6, e203187. [Google Scholar] [CrossRef]
- Coley, R.Y.; Zeger, S.L.; Mamawala, M.; Pienta, K.J.; Carter, H.B. Prediction of the Pathologic Gleason Score to Inform a Personalized Management Program for Prostate Cancer. Eur. Urol. 2017, 72, 135–141. [Google Scholar] [CrossRef]
- Gnanapragasam, V.J.; Barrett, T.; Thankapannair, V.; Thurtle, D.; Rubio-Briones, J.; Domínguez-Escrig, J.; Bratt, O.; Statin, P.; Muir, K.; Lophatananon, A. Using prognosis to guide inclusion criteria, define standardised endpoints and stratify follow-up in active surveillance for prostate cancer. BJU Int. 2019, 124, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Thankapannair, V.; Keates, A.; Barrett, T.; Gnanapragasam, V.J. Prospective Implementation and Early Outcomes of a Risk-stratified Prostate Cancer Active Surveillance Follow-up Protocol. Eur. Urol. Open Sci. 2023, 49, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Gnanapragasam, V.J.; Keates, A.; Lophatananon, A.; Thankapannair, V. The 5-year results of the Stratified Cancer Active Surveillance programme for men with prostate cancer. BJU Int. 2025, 135, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Tomer, A.; Nieboer, D.; Roobol, M.J.; Bjartell, A.; Steyerberg, E.W.; Rizopoulos, D. Personalised biopsy schedules based on risk of Gleason upgrading for patients with low-risk prostate cancer on active surveillance. BJU Int. 2021, 127, 96–107. [Google Scholar] [CrossRef]
- Light, A.; Lophatananon, A.; Keates, A.; Thankappannair, V.; Barrett, T.; Dominguez-Escrig, J.; Rubio-Briones, J.; Benheddi, T.; Olivier, J.; Villers, A.; et al. Development and External Validation of the STRATified CANcer Surveillance (STRATCANS) Multivariable Model for Predicting Progression in Men with Newly Diagnosed Prostate Cancer Starting Active Surveillance. J. Clin. Med. 2022, 12, 216. [Google Scholar] [CrossRef]
- Herlemann, A.; Huang, H.C.; Alam, R.; Tosoian, J.J.; Kim, H.L.; Klein, E.A.; Simko, J.P.; Chan, J.M.; Lane, B.R.; Davis, J.W.; et al. Decipher identifies men with otherwise clinically favorable-intermediate risk disease who may not be good candidates for active surveillance. Prostate Cancer Prostatic Dis. 2020, 23, 136–143. [Google Scholar] [CrossRef]
- Beckmann, K.R.; Bangma, C.H.; Helleman, J.; Bjartell, A.; Carroll, P.R.; Morgan, T.; Nieboer, D.; Santaolalla, A.; Trock, B.J.; Valdagni, R.; et al. Comparison of outcomes of different biopsy schedules among men on active surveillance for prostate cancer: An analysis of the G.A.P.3 global consortium database. Prostate 2022, 82, 876–879. [Google Scholar] [CrossRef]
- Van Hemelrijck, M.; Ji, X.; Helleman, J.; Roobol, M.J.; van der Linden, W.; Nieboer, D.; Bangma, C.H.; Frydenberg, M.; Rannikko, A.; Lee, L.S.; et al. Reasons for Discontinuing Active Surveillance: Assessment of 21 Centres in 12 Countries in the Movember GAP3 Consortium. Eur. Urol. 2019, 75, 523–531. [Google Scholar] [CrossRef]
- Moore, C.M.; King, L.E.; Withington, J.; Amin, M.B.; Andrews, M.; Briers, E.; Chen, R.C.; Chinegwundoh, F.I.; Cooperberg, M.R.; Crowe, J.; et al. Best Current Practice and Research Priorities in Active Surveillance for Prostate Cancer—A Report of a Movember International Consensus Meeting. Eur. Urol. Oncol. 2023, 6, 160–182. [Google Scholar] [CrossRef]
- Lam, T.B.L.; MacLennan, S.; Willemse, P.M.; Mason, M.D.; Plass, K.; Shepherd, R.; Baanders, R.; Bangma, C.H.; Bjartell, A.; Bossi, A.; et al. EAU-EANM-ESTRO-ESUR-SIOG Prostate Cancer Guideline Panel Consensus Statements for Deferred Treatment with Curative Intent for Localised Prostate Cancer from an International Collaborative Study (DETECTIVE Study). Eur. Urol. 2019, 76, 790–813. [Google Scholar] [CrossRef] [PubMed]
- Englman, C.; Adebusoye, B.; Maffei, D.; Stavrinides, V.; Bridge, J.; Kirkham, A.; Allen, C.; Dickinson, L.; Pendse, D.; Punwani, S.; et al. Magnetic Resonance Imaging–led Risk-adapted Active Surveillance for Prostate Cancer: Updated Results from a Large Cohort Study. Eur. Urol. 2025, 88, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zheng, Y.; Lin, D.W.; Newcomb, L.; Zhao, Y.Q. Constructing time-invariant dynamic surveillance rules for optimal monitoring schedules. Biometrics 2023, 79, 3895–3906. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Control Programme. HSE National Clinical Guideline: Active Surveillance for Patients with Prostate Cancer 2025. Available online: https://www2.healthservice.hse.ie/files/495/ (accessed on 10 December 2025).
- Ahdoot, M.; Wilbur Andrew, R.; Reese Sarah, E.; Lebastchi Amir, H.; Mehralivand, S.; Gomella Patrick, T.; Bloom, J.; Gurram, S.; Siddiqui, M.; Pinsky, P.; et al. MRI-Targeted, Systematic, and Combined Biopsy for Prostate Cancer Diagnosis. N. Engl. J. Med. 2020, 382, 917–928. [Google Scholar] [CrossRef]
- Epstein, J.I.; Feng, Z.; Trock, B.J.; Pierorazio, P.M. Upgrading and downgrading of prostate cancer from biopsy to radical prostatectomy: Incidence and predictive factors using the modified Gleason grading system and factoring in tertiary grades. Eur. Urol. 2012, 61, 1019–1024. [Google Scholar] [CrossRef]
- Borque-Fernando, Á.; Rubio-Briones, J.; Esteban, L.M.; Dong, Y.; Calatrava, A.; Gómez-Ferrer, Á.; Gómez-Gómez, E.; Gil Fabra, J.M.; Rodríguez-García, N.; López González, P.; et al. Role of the 4Kscore test as a predictor of reclassification in prostate cancer active surveillance. Prostate Cancer Prostatic Dis. 2019, 22, 84–90. [Google Scholar] [CrossRef]
- Eng, S.E.; Basasie, B.; Lam, A.; John Semmes, O.; Troyer, D.A.; Clarke, G.D.; Sunnapwar, A.G.; Leach, R.J.; Johnson-Pais, T.L.; Sokoll, L.J.; et al. Prospective comparison of restriction spectrum imaging and non-invasive biomarkers to predict upgrading on active surveillance prostate biopsy. Prostate Cancer Prostatic Dis. 2024, 27, 65–72. [Google Scholar] [CrossRef]
- Schwen, Z.R.; Mamawala, M.; Tosoian, J.J.; Druskin, S.C.; Ross, A.E.; Sokoll, L.J.; Epstein, J.I.; Carter, H.B.; Gorin, M.A.; Pavlovich, C.P. Prostate Health Index and multiparametric magnetic resonance imaging to predict prostate cancer grade reclassification in active surveillance. BJU Int. 2020, 126, 373–378. [Google Scholar] [CrossRef]
- Filson, C.P.; Zhu, K.; Huang, Y.; Zheng, Y.; Newcomb, L.F.; Williams, S.; Brooks, J.D.; Carroll, P.R.; Dash, A.; Ellis, W.J.; et al. Impact of Prostate Health Index Results for Prediction of Biopsy Grade Reclassification During Active Surveillance. J. Urol. 2022, 208, 1037–1045. [Google Scholar] [CrossRef]
- de la Calle, C.M.; Jing, Y.; Mamawala, M.M.; Landis, P.; Macura, K.J.; Trock, B.J.; Epstein, J.I.; Sokoll, L.J.; Pavlovich, C.P. Baseline prostate health index risk category and risk category changes during active surveillance predict grade reclassification. Urol. Oncol. Semin. Orig. Investig. 2023, 41, 455.e1–455.e6. [Google Scholar] [CrossRef]
- Olsson, H.; Nordström, T.; Jäderling, F.; Egevad, L.; Vigneswaran, H.T.; Annerstedt, M.; Grönberg, H.; Eklund, M.; Lantz, A. Incorporating Magnetic Resonance Imaging and Biomarkers in Active Surveillance Protocols-Results From the Prospective Stockholm3 Active Surveillance Trial (STHLM3AS). J. Natl. Cancer Inst. 2021, 113, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Kretschmer, A.; Tutrone, R.; Alter, J.; Berg, E.; Fischer, C.; Kumar, S.; Torkler, P.; Tadigotla, V.; Donovan, M.; Sant, G.; et al. Pre-diagnosis urine exosomal RNA (ExoDx EPI score) is associated with post-prostatectomy pathology outcome. World J. Urol. 2022, 40, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Connell, S.P.; Yazbek-Hanna, M.; McCarthy, F.; Hurst, R.; Webb, M.; Curley, H.; Walker, H.; Mills, R.; Ball, R.Y.; Sanda, M.G.; et al. A four-group urine risk classifier for predicting outcomes in patients with prostate cancer. BJU Int. 2019, 124, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Abstracts. Eur. Urol. 2025, 87, S4–S1792. [CrossRef]
- Fiorella, D.; Marenco, J.L.; Mascarós, J.M.; Borque-Fernando, Á.; Esteban, L.M.; Calatrava, A.; Pastor, B.; López-Guerrero, J.A.; Rubio-Briones, J. Role of PCA3 and SelectMDx in the optimization of active surveillance in prostate cancer. Actas Urol. Esp. 2021, 45, 439–446. [Google Scholar] [CrossRef]
- Vince, R.A., Jr.; Jiang, R.; Qi, J.; Tosoian, J.J.; Takele, R.; Feng, F.Y.; Linsell, S.; Johnson, A.; Shetty, S.; Hurley, P.; et al. Impact of Decipher Biopsy testing on clinical outcomes in localized prostate cancer in a prospective statewide collaborative. Prostate Cancer Prostatic Dis. 2022, 25, 677–683. [Google Scholar] [CrossRef]
- Press, B.H.; Jones, T.; Olawoyin, O.; Lokeshwar, S.D.; Rahman, S.N.; Khajir, G.; Lin, D.W.; Cooperberg, M.R.; Loeb, S.; Darst, B.F.; et al. Association Between a 22-feature Genomic Classifier and Biopsy Gleason Upgrade During Active Surveillance for Prostate Cancer. Eur. Urol. Open Sci. 2022, 37, 113–119. [Google Scholar] [CrossRef]
- Zhu, A.; Proudfoot, J.A.; Davicioni, E.; Ross, A.E.; Petkov, V.I.; Bonds, S.; Schussler, N.; Zaorsky, N.G.; Jia, A.Y.; Spratt, D.E.; et al. Use of Decipher Prostate Biopsy Test in Patients with Favorable-risk Disease Undergoing Conservative Management or Radical Prostatectomy in the Surveillance, Epidemiology, and End Results Registry. Eur. Urol. Oncol. 2024, 7, 1504–1512. [Google Scholar] [CrossRef]
- Leapman, M.S.; Sutherland, R.; Gross, C.P.; Ma, X.; Seibert, T.M.; Cooperberg, M.R.; Catalona, W.J.; Loeb, S.; Schulman-Green, D. Patient experiences with tissue-based genomic testing during active surveillance for prostate cancer. BJUI Compass 2024, 5, 142–149. [Google Scholar] [CrossRef]
- Kornberg, Z.; Cowan, J.E.; Westphalen, A.C.; Cooperberg, M.R.; Chan, J.M.; Zhao, S.; Shinohara, K.; Carroll, P.R. Genomic Prostate Score, PI-RADS™ version 2 and Progression in Men with Prostate Cancer on Active Surveillance. J. Urol. 2019, 201, 300–307. [Google Scholar] [CrossRef]
- Lin, D.W.; Zheng, Y.; McKenney, J.K.; Brown, M.D.; Lu, R.; Crager, M.; Boyer, H.; Tretiakova, M.; Brooks, J.D.; Dash, A.; et al. 17-Gene Genomic Prostate Score Test Results in the Canary Prostate Active Surveillance Study (PASS) Cohort. J. Clin. Oncol. 2020, 38, 1549–1557. [Google Scholar] [CrossRef] [PubMed]
- Cedars, B.E.; Washington, S.L., 3rd; Cowan, J.E.; Leapman, M.; Tenggara, I.; Chan, J.M.; Cooperberg, M.R.; Carroll, P.R. Stability of a 17-Gene Genomic Prostate Score in Serial Testing of Men on Active Surveillance for Early Stage Prostate Cancer. J. Urol. 2019, 202, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Kaul, S.; Wojno, K.J.; Stone, S.; Evans, B.; Bernhisel, R.; Meek, S.; D’Anna, R.E.; Ferguson, J.; Glaser, J.; Morgan, T.M.; et al. Clinical Outcomes in Men with Prostate Cancer who Selected Active Surveillance Using a Clinical Cell Cycle Risk Score. Pers. Med. 2019, 16, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Catalona, W.J.; Partin, A.W.; Sanda, M.G.; Wei, J.T.; Klee, G.G.; Bangma, C.H.; Slawin, K.M.; Marks, L.S.; Loeb, S.; Broyles, D.L.; et al. A multicenter study of [−2]pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. J. Urol. 2011, 185, 1650–1655. [Google Scholar] [CrossRef]
- Darst, B.F.; Chou, A.; Wan, P.; Pooler, L.; Sheng, X.; Vertosick, E.A.; Conti, D.V.; Wilkens, L.R.; Le Marchand, L.; Vickers, A.J.; et al. The Four-Kallikrein Panel Is Effective in Identifying Aggressive Prostate Cancer in a Multiethnic Population. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1381–1388. [Google Scholar] [CrossRef]
- Auvinen, A.; Tammela, T.L.J.; Mirtti, T.; Lilja, H.; Tolonen, T.; Kenttämies, A.; Rinta-Kiikka, I.; Lehtimäki, T.; Natunen, K.; Nevalainen, J.; et al. Prostate Cancer Screening with PSA, Kallikrein Panel, and MRI: The ProScreen Randomized Trial. JAMA 2024, 331, 1452–1459. [Google Scholar] [CrossRef]
- Grönberg, H.; Eklund, M.; Picker, W.; Aly, M.; Jäderling, F.; Adolfsson, J.; Landquist, M.; Haug, E.S.; Ström, P.; Carlsson, S.; et al. Prostate Cancer Diagnostics Using a Combination of the Stockholm3 Blood Test and Multiparametric Magnetic Resonance Imaging. Eur. Urol. 2018, 74, 722–728. [Google Scholar] [CrossRef]
- Madendere, S.; Kılıç, M.; Palaoğlu, E.; Veznikli, M.; Vural, M.; İğdem, A.; Tilki, D.; Esen, T.; Balbay, D. Role of the Stockholm3 Test in Guiding Confirmation Biopsy Decisions for Patients with Prostate Cancer on Active Surveillance. Eur. Urol. Focus. 2025, 11, 863–868. [Google Scholar] [CrossRef]
- McKiernan, J.; Donovan, M.J.; O’Neill, V.; Bentink, S.; Noerholm, M.; Belzer, S.; Skog, J.; Kattan, M.W.; Partin, A.; Andriole, G.; et al. A Novel Urine Exosome Gene Expression Assay to Predict High-grade Prostate Cancer at Initial Biopsy. JAMA Oncol. 2016, 2, 882–889. [Google Scholar] [CrossRef]
- Erdmann, K.; Distler, F.; Gräfe, S.; Kwe, J.; Erb, H.H.H.; Fuessel, S.; Pahernik, S.; Thomas, C.; Borkowetz, A. Transcript Markers from Urinary Extracellular Vesicles for Predicting Risk Reclassification of Prostate Cancer Patients on Active Surveillance. Cancers 2024, 16, 2453. [Google Scholar] [CrossRef]
- Klein, E.A.; Cooperberg, M.R.; Magi-Galluzzi, C.; Simko, J.P.; Falzarano, S.M.; Maddala, T.; Chan, J.M.; Li, J.; Cowan, J.E.; Tsiatis, A.C.; et al. A 17-gene Assay to Predict Prostate Cancer Aggressiveness in the Context of Gleason Grade Heterogeneity, Tumor Multifocality, and Biopsy Undersampling. Eur. Urol. 2014, 66, 550–560. [Google Scholar] [CrossRef]
- Cuzick, J.; Swanson, G.P.; Fisher, G.; Brothman, A.R.; Berney, D.M.; Reid, J.E.; Mesher, D.; Speights, V.O.; Stankiewicz, E.; Foster, C.S.; et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: A retrospective study. Lancet Oncol. 2011, 12, 245–255. [Google Scholar] [CrossRef]
- Cooperberg, M.R.; Simko, J.P.; Cowan, J.E.; Reid, J.E.; Djalilvand, A.; Bhatnagar, S.; Gutin, A.; Lanchbury, J.S.; Swanson, G.P.; Stone, S.; et al. Validation of a cell-cycle progression gene panel to improve risk stratification in a contemporary prostatectomy cohort. J. Clin. Oncol. 2013, 31, 1428–1434. [Google Scholar] [CrossRef] [PubMed]
- Cooperberg, M.R.; Freedland, S.J.; Schlomm, T.; Reid, J.E.; Stone, S.; Brawer, M.K. Predicting radical prostatectomy outcome: Cell cycle progression (CCP) score compared with primary Gleason grade among men with clinical Gleason less than 7 who are upgraded to Gleason 7. J. Clin. Oncol. 2014, 32, 13. [Google Scholar] [CrossRef]
- Singh, J. Current and emerging tissue-based molecular biomarkers for prostate cancer management: A narrative review. UroPrecision 2023, 1, 128–139. [Google Scholar] [CrossRef]
- Blume-Jensen, P.; Berman, D.M.; Rimm, D.L.; Shipitsin, M.; Putzi, M.; Nifong, T.P.; Small, C.; Choudhury, S.; Capela, T.; Coupal, L.; et al. Development and Clinical Validation of an In Situ Biopsy-Based Multimarker Assay for Risk Stratification in Prostate Cancer. Clin. Cancer Res. 2015, 21, 2591–2600. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.A.; Haddad, Z.; Yousefi, K.; Lam, L.L.C.; Wang, Q.; Choeurng, V.; Palmer-Aronsten, B.; Buerki, C.; Davicioni, E.; Li, J.; et al. Decipher Genomic Classifier Measured on Prostate Biopsy Predicts Metastasis Risk. Urology 2016, 90, 148–152. [Google Scholar] [CrossRef]
- Erho, N.; Crisan, A.; Vergara, I.A.; Mitra, A.P.; Ghadessi, M.; Buerki, C.; Bergstralh, E.J.; Kollmeyer, T.; Fink, S.; Haddad, Z.; et al. Discovery and Validation of a Prostate Cancer Genomic Classifier that Predicts Early Metastasis Following Radical Prostatectomy. PLoS ONE 2013, 8, e66855. [Google Scholar] [CrossRef]
- Ross, A.E.; Loeb, S.; Landis, P.; Partin, A.W.; Epstein, J.I.; Kettermann, A.; Feng, Z.; Carter, H.B.; Walsh, P.C. Prostate-specific antigen kinetics during follow-up are an unreliable trigger for intervention in a prostate cancer surveillance program. J. Clin. Oncol. 2010, 28, 2810–2816. [Google Scholar] [CrossRef]
- Whitson, J.M.; Porten, S.P.; Hilton, J.F.; Cowan, J.E.; Perez, N.; Cooperberg, M.R.; Greene, K.L.; Meng, M.V.; Simko, J.P.; Shinohara, K.; et al. The relationship between prostate specific antigen change and biopsy progression in patients on active surveillance for prostate cancer. J. Urol. 2011, 185, 1656–1660. [Google Scholar] [CrossRef]
- Ng, M.K.; Van As, N.; Thomas, K.; Woode-Amissah, R.; Horwich, A.; Huddart, R.; Khoo, V.; Thompson, A.; Dearnaley, D.; Parker, C. Prostate-specific antigen (PSA) kinetics in untreated, localized prostate cancer: PSA velocity vs PSA doubling time. BJU Int. 2009, 103, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Iremashvili, V.; Manoharan, M.; Lokeshwar, S.D.; Rosenberg, D.L.; Pan, D.; Soloway, M.S. Comprehensive analysis of post-diagnostic prostate-specific antigen kinetics as predictor of a prostate cancer progression in active surveillance patients. BJU Int. 2013, 111, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Aktas, S.; Yücetaş, U.; Yücetaş, E.; Ates, H.A.; Genc, C.; Erkan, E. The efficacy of prostate health index (PHI) in predicting pathological progression in low-risk localized prostate cancer cases under active surveillance protocol. World J. Urol. 2025, 43, 431. [Google Scholar] [CrossRef] [PubMed]
- Hougen, H.Y.; Reis, I.M.; Han, S.; Prakash, N.S.; Thomas, J.; Stoyanova, R.; Castillo, R.P.; Kryvenko, O.N.; Ritch, C.R.; Nahar, B.; et al. Evaluating 4Kscore’s role in predicting progression on active surveillance for prostate cancer independently of clinical information and PIRADS score. Prostate Cancer Prostatic Dis. 2025, 28, 180–186. [Google Scholar] [CrossRef]
- Gómez-Acebo, I.; Valero-Dominguez, S.; Llorca, J.; Alonso-Molero, J.; Belmonte, T.; Castaño-Vinyals, G.; Molina-Barceló, A.; Marcos-Gragera, R.; Kogevinas, M.; Rodríguez-Cundín, P.; et al. Role of circulating MicroRNAs in prostate cancer diagnosis and risk stratification in the MCC Spain study. Sci. Rep. 2025, 15, 17517. [Google Scholar] [CrossRef]
- Liu, R.S.C.; Olkhov-Mitsel, E.; Jeyapala, R.; Zhao, F.; Commisso, K.; Klotz, L.; Loblaw, A.; Liu, S.K.; Vesprini, D.; Fleshner, N.E.; et al. Assessment of Serum microRNA Biomarkers to Predict Reclassification of Prostate Cancer in Patients on Active Surveillance. J. Urol. 2018, 199, 1475–1481. [Google Scholar] [CrossRef]
- Hendriks, R.J.; van der Leest, M.M.G.; Israël, B.; Hannink, G.; YantiSetiasti, A.; Cornel, E.B.; Hulsbergen-van de Kaa, C.A.; Klaver, O.S.; Sedelaar, J.P.M.; Van Criekinge, W.; et al. Clinical use of the SelectMDx urinary-biomarker test with or without mpMRI in prostate cancer diagnosis: A prospective, multicenter study in biopsy-naïve men. Prostate Cancer Prostatic Dis. 2021, 24, 1110–1119. [Google Scholar] [CrossRef]
- Tosoian, J.J.; Loeb, S.; Kettermann, A.; Landis, P.; Elliot, D.J.; Epstein, J.I.; Partin, A.W.; Carter, H.B.; Sokoll, L.J. Accuracy of PCA3 measurement in predicting short-term biopsy progression in an active surveillance program. J. Urol. 2010, 183, 534–538. [Google Scholar] [CrossRef]
- Shore, N.; Concepcion, R.; Saltzstein, D.; Lucia, M.S.; van Breda, A.; Welbourn, W.; Lewine, N.; Gustavsen, G.; Pothier, K.; Brawer, M.K. Clinical utility of a biopsy-based cell cycle gene expression assay in localized prostate cancer. Curr. Med. Res. Opin. 2014, 30, 547–553. [Google Scholar] [CrossRef]
- Ghabili, K.; Paulson, N.; Syed, J.S.; Nawaf, C.B.; Khajir, G.; Martin, D.T.; Onofrey, J.; Leapman, M.S.; Levi, A.; Weinreb, J.C.; et al. Doubling of Decipher Biopsy Genomic Score Is Related to Disease Reclassification on Subsequent Surveillance Biopsy but Not Adverse Features on Radical Prostatectomy. Case Rep. Urol. 2021, 2021, 2687416. [Google Scholar] [CrossRef]
| Guideline | Risk Group | Clinical Criteria | Guideline Recommendation on AS |
|---|---|---|---|
| AUA [34] | Low Risk | ISUP GG1 and PSA < 10 ng/mL and cT1–T2a | Recommend AS as the preferred management option |
| Intermediate Risk, Favourable | GG1 and PSA 10–<20 ng/mL OR cT2b-c and <50% biopsy cores positive OR GG2 with PSA < 10 ng/mL and cT1-2a and <50% biopsy cores positive | Discuss AS and radical therapy | |
| EAU [6] | Low Risk | ISUP GG1 and PSA < 10 ng/mL and cT1-2a | Recommended AS as standard of care |
| Favourable Intermediate Risk | ISUP GG2 and PSA < 10 ng/mL and cT1-2b OR ISUP GG1 and PSA 10–20 ng/mL and cT1-2b OR ISUP GG1 and PSA < 10 ng/mL and cT2b | AS may be considered in selected cases | |
| NCCN [7] | Very Low Risk | Has all of the following: cT1c ISUP GG1 PSA < 10 ng/mL <3 prostate biopsy fragments/cores positive, ≤50% cancer in each fragment/core PSA density < 0.15 ng/mL/g | Recommend AS as the preferred management option |
| Low Risk | Has all of the following but does not qualify for very low risk: cT1–cT2a ISUP GG1 PSA < 10 ng/mL | Recommend AS as the preferred management option for most patients | |
| Favourable Intermediate Risk | Has all of the following: 1 risk intermediate risk factor (cT2b–cT2c, GG2 or 3, PSA 10–20 ng/mL) ISUP GG1 or 2 <50% biopsy cores positive (e.g., <6 of 12 cores) | Offer AS to carefully selected patients | |
| NICE [5] | Cambridge Prognostic Group 1 | ISUP GG1 and PSA < 10 ng/mL and stages cT1–T2 | Offer AS Consider radical treatment if AS not suitable or acceptable to the person |
| Cambridge Prognostic Group 2 | ISUP GG2 OR PSA 10–20 ng/mL and stages cT1–T2 | Offer a choice between AS or radical treatment if radical treatment is suitable | |
| Cambridge Prognostic Group 3 | ISUP GG2 and PSA 10–20 ng/mL and stages cT1–T2 OR ISUP GG3 and stages cT1–T2 | Offer radical treatment and consider AS for people who choose not to have immediate radical treatment |
| Name of Biomarker | Sample Type | Description of Biomarker +/− Clinical Factors Incorporated into Algorithm | Technical Notes/Methodology | Readout | FDA Approval Status | Commercial Availability | Roles in AS with Recent Evidence |
|---|---|---|---|---|---|---|---|
| 4-kallikrein (4K) | Blood | Total PSA, Free PSA, Intact PSA, human kallikrein-related peptidase 2 (hK2), combined with clinical factors (prior biopsy status, age and DRE) | Immunoassay | 4Kscore from <1% to >95% | Approved | Yes | Patient selection [67] |
| Prostate Health Index (PHI) | Blood | Total PSA, Free PSA, [−2] proPSA | Immunoassay | Phi score calculated from the formula: ([−2]proPSA/free PSA) × √PSA | Approved | Yes | Patient selection [68,69,70] Serial monitoring [71] |
| Stockholm3 | Blood | Plasma protein markers (human glandular kallikrein 2 [hK2], microseminoprotein beta [MSMB], microphage inhibitory cytokine-1 [MIC1], total PSA and free PSA) are combined with genetic markers (101 single-nucleotide polymorphisms) and clinical data (age, first-degree family history of prostate cancer, a previous biopsy, digital rectal examination, and prostate volume assessed by transrectal ultrasound at cancer diagnosis) | Immunoassay and RT-PCR | Stockholm3 score from 0% to 100% | Not approved by FDA (offered as laboratory-based test in a CLIA certified laboratory) | Yes | Patient selection [72] |
| ExoDx Prostate Intelliscore (EPI) | Urine (non-DRE) | EV ERG and PCA3 mRNA relative to SPDEF expression | RT-PCR | ExoDx Prostate Test score from 0 to 100 | Approved | Yes | Patient selection [73] |
| Prostate Urine Risk (PUR) | Urine (post-DRE) | 36-gene signature (AMACR, MEX3A, AMH, MEMO1, ANKRD34B, MME, APOC1, MMP11AR(exons 4–8), MMP26, DPP4, NKAIN1, ERG(exons 4–5), PALM3, GABARAPL2, PCA3, GAPDH, PPFIA2, GDF15, SIM2 (short), HOXC6, SMIM1, HPN, SSPO, IGFBP3, SULT1A1, IMPDH2, TDRD1, ITGBL1, TMPRSS2/ERG fusion, KLK4, TRPM4, MARCH5, TWIST1, MED4, UPK2) | NanoString expression analysis | Primary PUR score (PUR-1, PUR-2, PUR-3, PUR-4); PUR-4 as a continuous variable from 0 to 1 | Not approved (Offered only in a research setting) | Not available outside of research setting | Patient selection [74,75] Serial monitoring [74] |
| SelectMDx | Urine (post-DRE) | DLX1 and HOXC6 mRNA, in combination with serum PSA and clinical factors (age, DRE, prostate volume, family history of prostate cancer) | RT-PCR | SelectMDx risk score from −6 to 6 | Not approved by FDA (Offered as laboratory-based test in a CLIA certified laboratory) | Yes | Patient selection [76] |
| Decipher Prostate (22-gene genomic classifier, GC) | Biopsy tissue (FFPE) | 22-gene signature (LASP1, IQGAP3, NFIB, S1PR4, THBS2, ANO7, PCDH7, MYBPC1, EPPK1, TSBP, PBX1, NUSAP1, ZWILCH, UBE2C, CAMK2N1, RABGAP1, PCAT-32, GLYATL1P4/PCAT-80, TNFRSF19) | Microarray | Genomic Classifier score from 0–1 (also known as the Decipher Biopsy score) | Not approved by FDA (Offered as laboratory-based test in a CLIA certified laboratory) | Yes | Patient selection [57,77,78,79,80] |
| Genomic Prostate Score (GPS)—previously Oncotype Dx | Biopsy tissue (FFPE) | 17-gene signature (AZGP1, KLK2, SRD5A2, FAM13C, FLNC, GSN, TPM2, GSTM2, TPX2, BGN, COL1A1, SFRP4, ARF1, ATP5E, CLTC, GPS1 and PGK1) | RT-PCR | GPS from 0 to 100 | Not approved by FDA (Offered as laboratory-based test in a CLIA certified laboratory) | Yes | Patient selection [81,82] Serial monitoring [83] |
| Prolaris biopsy test (Cell Cycle Progression score) | Biopsy tissue (FFPE) | 46-gene signature (FOXM1, CDC20, CDKN3, CDC2, KIF11, KIAA0101, NUSAP1, CENPF, ASPM, BUB1B, RRM2, DLGAP5, BIRC5, KIF20A, PLK1, TOP2A, TK1, PBK, ASF1B, C18orf24, RAD54L, PTTG1, CDCA3, MCM10, PRC1, DTL, CEP55, RAD51, CENPM, CDCA8, ORC6L, and 15 housekeeping genes) | RT-PCR | Cell Cycle Progression score from 0 to 6 | Approved | Yes | Patient selection [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Smith, S.F.; Mills, R.D.; Cooper, C.S.; Brewer, D.S. Molecular and Genetic Biomarkers in Prostate Cancer Active Surveillance: Recent Developments and Future Perspectives. Genes 2026, 17, 71. https://doi.org/10.3390/genes17010071
Smith SF, Mills RD, Cooper CS, Brewer DS. Molecular and Genetic Biomarkers in Prostate Cancer Active Surveillance: Recent Developments and Future Perspectives. Genes. 2026; 17(1):71. https://doi.org/10.3390/genes17010071
Chicago/Turabian StyleSmith, Stephanie F., Robert D. Mills, Colin S. Cooper, and Daniel S. Brewer. 2026. "Molecular and Genetic Biomarkers in Prostate Cancer Active Surveillance: Recent Developments and Future Perspectives" Genes 17, no. 1: 71. https://doi.org/10.3390/genes17010071
APA StyleSmith, S. F., Mills, R. D., Cooper, C. S., & Brewer, D. S. (2026). Molecular and Genetic Biomarkers in Prostate Cancer Active Surveillance: Recent Developments and Future Perspectives. Genes, 17(1), 71. https://doi.org/10.3390/genes17010071

