Mixture Deconvolution with Massively Parallel Sequencing Data: Microhaplotypes Versus Short Tandem Repeats
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Construction of Simulated Mixtures
2.3. PCR Amplification and MPS Library Building of Real Mixtures
2.4. DNA Sequencing of Real Mixtures
2.5. Data Analysis of Mixtures
2.5.1. MH Mixtures
2.5.2. STR Mixtures
2.5.3. MPSproto Deconvolution
3. Results
3.1. MPSproto Analyses of Simulated Two-Person Mixtures
3.2. Log10LR of Minor Contributors in Two-Person Mixtures
3.3. MPSproto Analyses of Real Mixtures
3.4. MPSproto Analyses of Simulated Three-Person Mixtures
3.5. Log10LR of Minor Contributors in Three-Person Mixtures
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gill, P.; Haned, H.; Bleka, O.; Hansson, O.; Dørum, G.; Egeland, T. Genotyping and interpretation of STR-DNA: Low-template, mixtures and database matches—Twenty years of research and development. Forensic Sci. Int. Genet. 2015, 18, 100–117. [Google Scholar] [CrossRef]
- McDonald, C.; Taylor, D.; Linacre, A. PCR in Forensic Science: A Critical Review. Genes 2024, 15, 438. [Google Scholar] [CrossRef]
- Hares, D.R. Expanding the CODIS core loci in the United States. Forensic Sci. Int. Genet. 2012, 6, e52–e54. [Google Scholar] [CrossRef]
- Kidd, K.K.; Pakstis, A.J.; Speed, W.C.; Lagacé, R.; Chang, J.; Wootton, S.; Haigh, E.; Kidd, J.R. Current sequencing technology makes microhaplotypes a powerful new type of genetic marker for forensics. Forensic Sci. Int. Genet. 2014, 12, 215–224. [Google Scholar] [CrossRef]
- Kidd, K.K.; Pakstis, A.J.; Gandotra, N.; Scharfe, C.; Podini, D. A multipurpose panel of microhaplotypes for use with STR markers in casework. Forensic Sci. Int. Genet. 2022, 60, 102729. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.S.; Feng, Y.S.; Kang, K.L.; Zhang, C.; Ji, A.Q.; Ye, J.; Wang, L. Screening of highly discriminative microhaplotype markers for individual identification and mixture deconvolution in East Asian populations. Forensic Sci. Int. Genet. 2022, 59, 102720. [Google Scholar] [CrossRef] [PubMed]
- Hussing, C.; Huber, C.; Bytyci, R.; Mogensen, H.S.; Morling, N.; Børsting, C. Sequencing of 231 forensic genetic markers using the MiSeq FGxTM forensic genomics system—An evaluation of the assay and software. Forensic Sci. Res. 2018, 3, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.B.; Rao, M.; Chen, Q.F.; Ji, A.Q.; Zhang, C.; Kang, K.L.; Wu, H.; Ye, J.; Nie, S.J.; Wang, L. A 124-plex Microhaplotype Panel Based on Next-generation Sequencing Developed for Forensic Applications. Sci. Rep. 2020, 10, 1945. [Google Scholar] [CrossRef]
- Oldoni, F.; Bader, D.; Fantinato, C.; Wootton, S.C.; Lagacé, R.; Kidd, K.K.; Podini, D. A sequence-based 74plex microhaplotype assay for analysis of forensic DNA mixtures. Forensic Sci. Int. Genet. 2020, 49, 102367. [Google Scholar] [CrossRef]
- Wu, R.; Li, H.; Li, R.; Peng, D.; Wang, N.; Shen, X.; Sun, H. Identification and sequencing of 59 highly polymorphic microhaplotypes for analysis of DNA mixtures. Int. J. Leg. Med. 2021, 135, 1137–1149. [Google Scholar] [CrossRef]
- Bai, Z.; Zhang, N.; Liu, J.; Ding, H.; Zhang, Y.; Wang, T.; Gao, J.; Ou, X. Identification of missing persons through kinship analysis by microhaplotype sequencing of single-source DNA and two-person DNA mixtures. Forensic Sci. Int. Genet. 2022, 58, 102689. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Xue, J.; Tan, M.; Chen, D.; Xiao, Y.; Liu, G.; Zheng, Y.; Wu, Q.; Liao, M.; Lv, M.; et al. An MPS-Based 50plex Microhaplotype Assay for Forensic DNA Analysis. Genes 2023, 14, 865. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Ma, G.; Lu, C.; Wang, Q.; Fu, L.; Cong, B.; Li, S. Development and evaluation of a novel panel containing 188 microhaplotypes for 2nd-degree kinship testing in the Hebei Han population. Forensic Sci. Int. Genet. 2023, 65, 102855. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, H.; Cao, Y.; Huang, Y.; Wei, Y.; Hu, Y.; Dai, X.; Shan, T.; Wang, Y.; Zhang, J. Evaluation of large-scale highly polymorphic microhaplotypes in complex DNA mixtures analysis using RMNE method. Forensic Sci. Int. Genet. 2023, 65, 102874. [Google Scholar] [CrossRef]
- Ling, X.; Han, S.; Lin, X.; Bai, Z.; Zhang, N.; Li, J.; Wang, H.; Ou, X. Applications of Probabilistic Genotyping Method for Combining Evidence Across Microhaplotype DNA Mixture Profiles. Electrophoresis 2024. [Google Scholar] [CrossRef]
- González-Bao, J.; Mosquera-Miguel, A.; Casanova-Adán, L.; Ambroa-Conde, A.; Ruiz-Ramírez, J.; Cabrejas-Olalla, A.; Boullón-Cassau, M.; Freire-Aradas, A.; Rodríguez-López, A.; Roth, C.; et al. Performance comparison of a previously validated microhaplotype panel and a forensic STR panel for DNA mixture analysis. Forensic Sci. Int. Genet. 2025, 74, 103144. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hou, T.; Zhu, Q.; Hu, Y.; Wang, H.; Wei, Y.; Zhang, J. A continuous model for interpreting microhaplotype profiles of forensic DNA mixtures. Forensic Sci. Int. Genet. 2025, 78, 103271. [Google Scholar] [CrossRef] [PubMed]
- Green, P.J.; Mortera, J. Inference About Complex Relationships Using Peak Height Data from DNA Mixtures. J. R. Stat. Soc. Ser. C Appl. Stat. 2021, 70, 1049–1182. [Google Scholar] [CrossRef]
- Bleka, Ø.; Storvik, G.; Gill, P. EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts. Forensic Sci. Int. Genet. 2016, 21, 35–44. [Google Scholar] [CrossRef]
- De La Puente, M.; Phillips, C.; Xavier, C.; Amigo, J.; Carracedo, A.; Parson, W.; Lareu, M. Building a custom large-scale panel of novel microhaplotypes for forensic identification using MiSeq and Ion S5 massively parallel sequencing systems. Forensic Sci. Int. Genet. 2020, 45, 102213. [Google Scholar] [CrossRef]
- Tomas, C.; Rodrigues, P.; Jønck, C.G.; Barekzay, Z.; Simayijiang, H.; Pereira, V.; Børsting, C. Performance of a 74-Microhaplotype Assay in Kinship Analyses. Genes 2024, 15, 224. [Google Scholar] [CrossRef]
- Hussing, C.; Bytyci, R.; Huber, C.; Morling, N.; Børsting, C. The Danish STR sequence database: Duplicate typing of 363 Danes with the ForenSeqTM DNA Signature Prep Kit. Int. J. Leg. Med. 2019, 133, 325–334. [Google Scholar] [CrossRef]
- Jønck, C.G.; Børsting, C. Introduction of the python script MHinNGS for analysis of microhaplotypes. Forensic Sci. Int. Genet. Suppl. Ser. 2022, 8, 79–81. [Google Scholar] [CrossRef]
- Jønck, C.G.; Qian, X.; Simayijiang, H.; Børsting, C. STRinNGS v2.0: Improved tool for analysis and reporting of STR sequencing data. Forensic Sci. Int. Genet. 2020, 48, 102331. [Google Scholar] [CrossRef]
- Bleka, Ø.; Just, R.; Agudo, M.M.; Gill, P. MPSproto: An extension of EuroForMix to evaluate MPS-STR mixtures. Forensic Sci. Int. Genet. 2022, 61, 102781. [Google Scholar] [CrossRef] [PubMed]
- Cock, P.J.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25, 1422–1423. [Google Scholar] [CrossRef] [PubMed]
- Bleka, O. MPSproto: A Quantitative Model for MPS Data with Complex stutters. 2024. Available online: https://github.com/oyvble/MPSproto/ (accessed on 15 September 2025).
- Rodrigues, P.; Pinto, N.; Otterlund, T.; Jønck, C.G.; Prata, M.J.; Børsting, C.; Pereira, V. Enhancing the Potential of Microhaplotypes for Forensic Applications: Insights from Afghan and Somali Populations. Genes 2025, 16, 532. [Google Scholar] [CrossRef]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 56–61. [Google Scholar] [CrossRef]
- Wickham, H.; Bryan, J. readxl: Read Excel Files. 2023. Available online: http://CRAN.R-project.org/package=readxl (accessed on 15 September 2025).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation. 2023. Available online: http://CRAN.R-project.org/package=dplyr (accessed on 15 September 2025).
- Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations. 2023. Available online: http://CRAN.R-project.org/package=stringr (accessed on 15 September 2025).
- Wickham, H.; Vaughan, D.; Girlich, M. tidyr: Tidy Messy Data. 2024. Available online: http://CRAN.R-project.org/package=tidyr (accessed on 15 September 2025).
- Wickham, H. Reshaping Data with the reshape Package. J. Stat. Softw. 2007, 21, 1–20. [Google Scholar] [CrossRef]
- Ooms, J. writexl: Export Data Frames to Excel “xlsx” Format. 2023. Available online: http://CRAN.R-project.org/package=writexl (accessed on 15 September 2025).
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Schauberger, P.; Walker, A. openxlsx: Read, Write and Edit xlsx Files. 2023. Available online: http://CRAN.R-project.org/package=openxlsx (accessed on 15 September 2025).
- Müller, K.; Wickham, H. tibble: Simple Data Frames. 2023. Available online: http://CRAN.R-project.org/package=tibble (accessed on 15 September 2025).
- Cheng, K.; Skillman, J.; Hickey, S.; Just, R.; Moreno, L.; Bright, J.A.; Kelly, H.; Lin, M.H.; Curran, J.M.; Buckleton, J. Variability and additivity of read counts for aSTRs in NGS DNA profiles. Forensic Sci. Int. Genet. 2020, 48, 102351. [Google Scholar] [CrossRef]
- European Network of Forensic Science Institutes (ENFSI). ENFSI Guideline for Evaluative Reporting in Forensic Science (Approved Version 3.0); European Network of Forensic Science Institutes (ENFSI): Wiesbaden, Germany, 2015. [Google Scholar]
- Staadig, A.; Tillmar, A. Evaluation of microhaplotypes in forensic kinship analysis from a Swedish population perspective. Int. J. Leg. Med. 2021, 135, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Chen, H.; Li, R.; Zang, Y.; Shen, X.; Hao, B.; Wang, Q.; Sun, H. Pairwise kinship testing with microhaplotypes: Can advancements be made in kinship inference with these markers? Forensic Sci. Int. 2021, 325, 110875. [Google Scholar] [CrossRef] [PubMed]
Mixtures 1 | Major Contributor | Minor Contributor | ||||
---|---|---|---|---|---|---|
Correct | Wrong | Undetermined 2 | Correct | Wrong | Undetermined 2 | |
19:1 | 99.9% | 0% | 0.1% | 22.3% | 1.8% | 75.9% |
9:1 | 99.8% | 0% | 0.2% | 36.1% | 0.6% | 63.3% |
3:1 | 93% | 0.2% | 6.8% | 75.6% | 0.7% | 23.7% |
1:1 | 12.3% | 0% | 87.7% | 12.3% | 0% | 87.7% |
Mixtures 1 | Major Contributor | Minor Contributor | ||||
---|---|---|---|---|---|---|
Correct | Wrong | Undetermined 2 | Correct | Wrong | Undetermined 2 | |
19:1 | 100% | 0% | 0% | 7.3% | 0% | 92.7% |
9:1 | 99.7% | 0% | 0.3% | 30.2% | 0.4% | 69.4% |
3:1 | 82% | 0.7% | 17.3% | 58.9% | 1.1% | 40% |
1:1 | 14% | 8% | 78% | 13.9% | 8% | 78.1% |
Mixtures 1 | Major Contributor | Minor Contributor | ||||
---|---|---|---|---|---|---|
Correct | Wrong | Undetermined 2 | Correct | Wrong | Undetermined 2 | |
29:1 | 99.5% | 0% | 0.5% | 5.9% | 0% | 94.1% |
9:1 | 88.7% | 0% | 11.3% | 20.1% | 0.2% | 79.7% |
3:1 | 78.5% | 0.2% | 21.3% | 35.8% | 0.2% | 64% |
2:1 | 24.6% | 0% | 75.4% | 20.3% | 0% | 79.7% |
1:1 | 19.2% | 0% | 80.8% | 19.2% | 0% | 80.8% |
1:2 | 23.3% | 0% | 76.7% | 21.4% | 0% | 78.6% |
1:3 | 60.8% | 0% | 39.2% | 34.1% | 0.2% | 65.7% |
1:9 | 99% | 0% | 1% | 23.2% | 0.3% | 76.5% |
1:29 | 99.3% | 0% | 0.7% | 6.4% | 0% | 93.6% |
Mixtures 1 | Major Contributor | Minor Contributor | ||||
---|---|---|---|---|---|---|
Correct | Wrong | Undetermined 2 | Correct | Wrong | Undetermined 2 | |
25:1 | 96.2% | 0% | 3.9% | 0% | 0% | 100% |
12:1 | 100% | 0% | 0% | 1.9% | 0% | 98.1% |
6:1 | 86.6% | 1.9% | 11.6% | 5.8% | 1.9% | 92.3% |
3:1 | 53.9% | 0% | 46.1% | 11.5% | 0% | 88.5% |
1:1 | 3.8% | 0% | 96.2% | 3.8% | 0% | 96.2% |
1:3 | 9.6% | 0% | 90.4% | 5.8% | 0% | 94.2% |
1:6 | 92.3% | 0% | 7.7% | 3.8% | 0% | 96.2% |
1:12 | 96.1% | 0% | 3.9% | 0% | 0% | 100% |
1:25 | 100% | 0% | 0% | 0% | 0% | 100% |
Mixtures 1 | Contributor 1 | Contributor 2 | Contributor 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Correct | Wrong | Undetermined 2 | Correct | Wrong | Undetermined 2 | Correct | Wrong | Undetermined 2 | |
9:9:2 | 12.7% | 0.8% | 86.5% | 12.7% | 0.5% | 86.8% | 22.2% | 0.3% | 77.5% |
14:3:3 | 94.9% | 0.4% | 4.7% | 9.7% | 0% | 90.3% | 9.7% | 0% | 90.3% |
14:5:1 | 88.6% | 0.4% | 11% | 71.6% | 0.6% | 27.8% | 12.9% | 0.3% | 86.8% |
Mixtures 1 | Contributor 1 | Contributor 2 | Contributor 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Correct | Wrong | Undetermined 2 | Correct | Wrong | Undetermined 2 | Correct | Wrong | Undetermined 2 | |
9:9:2 | 1.86% | 5.2% | 92.9% | 1.8% | 4.1% | 94.1% | 17.7% | 0.6% | 81.7% |
14:3:3 | 85% | 0.6% | 14.4% | 0.3% | 0.3% | 99.4% | 0.4% | 0.3% | 99.3% |
14:5:1 | 77.2% | 0.7% | 22.1% | 48.2% | 1.6% | 50.2% | 2.5% | 0.1% | 97.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuffrida, M.; Rodrigues, P.; Köksal, Z.; Jønck, C.G.; Pereira, V.; Børsting, C. Mixture Deconvolution with Massively Parallel Sequencing Data: Microhaplotypes Versus Short Tandem Repeats. Genes 2025, 16, 1105. https://doi.org/10.3390/genes16091105
Giuffrida M, Rodrigues P, Köksal Z, Jønck CG, Pereira V, Børsting C. Mixture Deconvolution with Massively Parallel Sequencing Data: Microhaplotypes Versus Short Tandem Repeats. Genes. 2025; 16(9):1105. https://doi.org/10.3390/genes16091105
Chicago/Turabian StyleGiuffrida, Monica, Pedro Rodrigues, Zehra Köksal, Carina G. Jønck, Vania Pereira, and Claus Børsting. 2025. "Mixture Deconvolution with Massively Parallel Sequencing Data: Microhaplotypes Versus Short Tandem Repeats" Genes 16, no. 9: 1105. https://doi.org/10.3390/genes16091105
APA StyleGiuffrida, M., Rodrigues, P., Köksal, Z., Jønck, C. G., Pereira, V., & Børsting, C. (2025). Mixture Deconvolution with Massively Parallel Sequencing Data: Microhaplotypes Versus Short Tandem Repeats. Genes, 16(9), 1105. https://doi.org/10.3390/genes16091105