hTERT Gene Expression and Athlete’s Heart: A Study in Middle-Aged Endurance Athletes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Genetic Analysis
2.3. Cardiological Assessment
2.4. Exercise Physiology Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blackburn, E.H.; Epel, E.S.; Lin, J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science 2015, 350, 1193–1198. [Google Scholar] [CrossRef]
- Yeh, J.K.; Wang, C.Y. Telomeres and telomerase in cardiovascular diseases. Genes 2016, 7, 58. [Google Scholar] [CrossRef]
- Minamino, T.; Miyauchi, H.; Yoshida, T.; Ishida, Y.; Yoshida, H.; Komuro, I. Endothelial cell senescence in human atherosclerosis: Role of telomere in endothelial dysfunction. Circulation 2002, 105, 1541–1544. [Google Scholar] [CrossRef] [PubMed]
- La Gerche, A.; Taylor, A.J.; Prior, D.L. Athlete’s heart: The potential for multimodality imaging to address the critical remaining questions. JACC Cardiovasc. Imaging 2009, 2, 350–363. [Google Scholar] [CrossRef]
- Lazzeroni, D.; Rimoldi, O.; Camici, P.G. From left ventricular hypertrophy to dysfunction and failure. Circ. J. 2016, 80, 555–564. [Google Scholar] [CrossRef]
- D’Andrea, A.; La Gerche, A.; Golia, E.; Padalino, R.; Calabrò, R.; Russo, M.G.; Bossone, E. Physiologic and pathophysiologic changes in the right heart in highly trained athletes. Herz 2015, 40, 369–378. [Google Scholar] [CrossRef]
- Devereux, R.B.; Koren, M.J.; de Simone, G.; Roman, M.J.; Laragh, J.H. Left ventricular mass as a measure of preclinical hypertensive disease. Am. J. Hypertens. 1992, 5, 175S–181S. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J. Structural features of the athlete’s heart as defined by echocardiogaphy. J. Am. Coll. Cardiol. 1986, 7, 190–203. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.; Dagli, M.N. Athlete Health and Exercise-Related Deaths. Fırat Üniversitesi Sağlık Bilim. Tıp Derg. 2016, 30, 91–106. [Google Scholar]
- Maron, B.J.; Isner, J.M.; McKenna, W.J. 26th Bethesda conference: Recommendations for determining eligibility for competition in athletes with cardiovascular abnormalities. Task Force 3: Hypertrophic cardiomyopathy, myocarditis and other myopericardial diseases and mitral valve prolapse. J. Am. Coll. Cardiol. 1994, 24, 880–885. [Google Scholar] [CrossRef]
- Denham, J.; Sellami, M. Exercise training increases telomerase reverse transcriptase gene expression and telomerase activity: A systematic review and meta-analysis. Ageing Res. Rev. 2021, 70, 101411. [Google Scholar] [CrossRef] [PubMed]
- Ludlow, A.T.; Zimmerman, J.B.; Witkowski, S.; Hearn, J.W.; Hatfield, B.D.; Roth, S.M. Relationship between physical activity level, telomere length, and telomerase activity. Med. Sci. Sports Exerc. 2008, 40, 1764–1771. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.R., Jr.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef]
- Williams, C.J.; Williams, M.G.; Eynon, N.; Ashton, K.J.; Little, J.P.; Wisloff, U.; Coombes, J.S. Genes to predict VO2max trainability: A systematic review. BMC Genom. 2017, 18 (Suppl. 8), 831. [Google Scholar] [CrossRef]
- Schellnegger, M.; Lin, A.C.; Hammer, N.; Kamolz, L.P. Physical activity on telomere length as a biomarker for aging: A systematic review. Sports Med. Open 2022, 8, 111. [Google Scholar] [CrossRef]
- Denham, J.; O’Brien, B.J.; Prestes, P.R.; Brown, N.J.; Charchar, F.J. Increased expression of telomere-regulating genes in endurance athletes with long leukocyte telomeres. J. Appl. Physiol. 2016, 120, 148–158. [Google Scholar] [CrossRef]
- Werner, C.; Fürster, T.; Widmann, T.; Pöss, J.; Roggia, C.; Hanhoun, M.; Scharhag, J.; Büchner, N.; Meyer, T.; Kindermann, W.; et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation 2009, 120, 2438–2447. [Google Scholar] [CrossRef]
- Lang, R.M.; Bierig, M.; Devereux, R.B.; Flachskampf, F.A.; Foster, E.; Pellikka, P.A.; Picard, M.H.; Roman, M.J.; Seward, J.; Shanewise, J.S.; et al. Recommendations for chamber quantification: A report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2005, 18, 1440–1463. [Google Scholar]
- Sahn, D.J.; DeMaria, A.; Kisslo, J.; Weyman, A. Recommendations regarding quantitation in M-mode echocardiography: Results of a survey of echocardiographic measurements. Circulation 1978, 58, 1072–1083. [Google Scholar] [CrossRef] [PubMed]
- Devereux, R.B.; Alonso, D.R.; Lutas, E.M.; Gottlieb, G.J.; Campo, E.; Sachs, I.; Reichek, N. Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. Am. J. Cardiol. 1986, 57, 450–458. [Google Scholar] [CrossRef] [PubMed]
- American Thoracic Society/American College of Chest Physicians. ATS/ACCP Statement on cardiopulmonary exercise testing. Am. J. Respir. Crit. Care Med. 2003, 167, 211–277. [Google Scholar] [CrossRef]
- Clark, A.; De la Rosa, A.B.; DeRevere, J.L.; Astorino, T.A. Effects of various interval training regimes on changes in maximal oxygen uptake, body composition, and muscular strength in sedentary women with obesity. Eur. J. Appl. Physiol. 2019, 119, 879–888. [Google Scholar] [CrossRef]
- Jette, M.; Sidney, K.; Blumchen, G. Metabolic equivalents (Mets) in exercise testing, exercise prescription, and evaluation of functional-capacity. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef]
- Mendes, M.A.; da Silva, I.; Ramires, V.; Reichert, F.; Martins, R.; Ferreira, R.; Tomasi, E. Metabolic equivalent of task (METs) thresholds as an indicator of physical activity intensity. PLoS ONE 2018, 13, e0200701. [Google Scholar] [CrossRef]
- Franklin, B.A.; Brinks, J.; Berra, K.; Lavie, C.J.; Gordon, N.F.; Sperling, L.S. Using metabolic equivalents in clinical practice. Am. J. Cardiol. 2018, 121, 382–387. [Google Scholar] [CrossRef]
- Davis, J.A.; Storer, T.W.; Caiozzo, V.J.; Pham, P.H. Lower reference limit for maximal oxygen uptake in men and women. Clin. Physiol. Funct. Imaging 2002, 22, 332–338. [Google Scholar] [CrossRef]
- Förstemann, K.; Lingner, J. Telomerase limits the extent of base pairing between template RNA and telomeric DNA. EMBO Rep. 2005, 6, 361–366. [Google Scholar] [CrossRef]
- Effros, R.B. Telomere/telomerase dynamics within the human immune system: Effect of chronic infection and stress. Exp. Gerontol. 2011, 46, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Rivero, G.; Ruiz-Torres, M.P.; Rivas-Elena, J.V.; Jerkic, M.; Díez-Marques, M.L.; Lopez-Novoa, J.M.; Blasco, M.A.; Rodríguez-Puyol, D. Mice deficient in telomerase activity develop hypertension because of an excess of endothelin production. Circulation 2006, 114, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Karlsson, I.K.; Karlsson, R.; Tillander, A.; Reynolds, C.A.; Pedersen, N.L.; Hägg, S. Exploring the causal pathway from telomere length to coronary heart disease. Circ. Res. 2017, 121, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Cherkas, L.F.; Hunkin, J.L.; Kato, B.S.; Richards, J.B. Association between physical activity in leisure time and leukocyte telomere length. Arch. Intern. Med. 2008, 168, 154–158. [Google Scholar] [CrossRef]
- La Rocca, T.J.; Seals, D.R.; Pierce, G. Leukocyte telomere length is preserved with aging in endurance exercise-trained adults and related to maximal aerobic capacity. Mech. Ageing Dev. 2010, 131, 165–167. [Google Scholar] [CrossRef]
- Werner, C.M.; Hecksteden, A.; Morsch, A.; Zundler, J.; Wegmann, M.; Kratzsch, J.; Thiery, J.; Hohl, M.; Bittenbring, J.T.; Neumann, F.; et al. Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study. Eur. Heart J. 2019, 40, 34–46. [Google Scholar] [CrossRef]
- Spanakis, M.; Fragkiadaki, P.; Renieri, E.; Vakonaki, E.; Fragkiadoulaki, I.; Alegakis, A.; Kiriakakis, M.; Panagiotou, N.; Ntoumou, E.; Gratsias, I.; et al. Advancing athletic assessment by integrating conventional methods with cutting-edge biomedical technologies for comprehensive performance, wellness, and longevity insights. Front. Sports Act. Living 2024, 5, 1327792. [Google Scholar] [CrossRef]
- Baliou, S.; Spanakis, M.; Apetroaei, M.; Ioannou, P.; Fragkiadaki, P.; Fragkiadoulaki, I.; Renieri, E.; Vakonaki, E.; Tzatzarakis, M.N.; Nosyrev, A.E.; et al. The impact of exercise on telomere length dynamics: Molecular mechanisms and implications in athletes (Review). World Acad. Sci. J. 2025, 7, 56. [Google Scholar] [CrossRef]
- Penggalih, M.H.S.T.; Sutanto, Y.S.; Taslim, N.A.; Syahputra, R.A.; Hardinsyah, H.; Tjandrawinata, R.R.; Nurkolis, F. Precision nutrition in sports science: An opinion on omics-based personalization and athletic outcomes. Front. Nutr. 2025, 12, 1611440. [Google Scholar] [CrossRef]
- Samani, N.J.; van der Harst, P. Biological ageing and cardiovascular disease. Heart 2008, 94, 537–539. [Google Scholar] [CrossRef] [PubMed]
- Nawrot, T.S.; Staessen, J.A.; Gardner, J.P.; Aviv, P.A. Telomere length and possible link to X chromosome. Lancet 2004, 363, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.P.; Li, S.; Srinivasan, S.R.; Chen, W.; Kimura, M.; Lu, X.; Berenson, G.S.; Aviv, A. Rise in insulin resistance is associated with escalated telomere attrition. Circulation 2005, 111, 2171–2177. [Google Scholar] [CrossRef] [PubMed]
- Demissie, S.; Levy, D.; Benjamin, E.J.; Cupples, L.A.; Gardner, J.P.; Herbert, A.; Kimura, M.; Larson, M.G.; Meigs, J.B.; Keaney, J.F.; et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell 2006, 5, 325–330. [Google Scholar] [CrossRef]
Athlete (n = 38) | Control (n = 37) | p Value | |
---|---|---|---|
Age (year) | 46.5 ± 8.1 | 44.11 ± 5.51 | 0.097 |
Size (cm) | 171.3 ± 6.5 | 171.3 ± 6.1 | 0.99 |
Weight (kg) | 69.9 ± 5.1 | 67.7 ± 7.9 | 0.060 |
BMI | 23.6 ± 1.1 | 22.9 ± 1.9 | 0.066 |
RV Thickness | 3.4 ± 0.8 | 0.8 ± 1.2 | 0.000 |
EF | 69.5 ± 3.8 | 66.8 ± 3.5 | 0.002 |
IVS | 10.0 ± 1.3 | 9.2 ± 1.3 | 0.007 |
PW | 9.7 ± 0.8 | 8.6 ± 1.0 | 0.000 |
LVEDD | 49.0 ± 3.5 | 46.9 ± 5.1 | 0.041 |
LVM | 95.0 ± 17.8 | 76.7 ± 14.7 | 0.000 |
LVEDV | 129.8 ± 21.9 | 79.0 ± 7.7 | 0.000 |
RVEDD | 27.8 ± 4.4 | 27.6 ± 4.4 | 0.787 |
Sports age (year) | 10.6 ± 7.4 | 0.0 ± 0.0 | 0.000 |
Training volume (km/week) | 56.4 ± 5.5 | 0.0 ± 0.0 | 0.000 |
VO2peak (mL/kg/min) | 44.8 ± 5.5 | 32.2 ± 3.9 | 0.000 |
Creatinine | 0.7 ± 0.2 | 0.7 ± 0.2 | 0.117 |
Glucose | 98.9 ± 5.1 | 92.9 ± 4.8 | 0.000 |
HDL | 54.2 ± 11.7 | 51.4 ± 10.9 | 0.287 |
LDL | 107.8 ± 22.1 | 103.6 ± 25.5 | 0.452 |
Total cholesterol * | 231.4 ± 27.8 | 213.5 ± 28.9 | 0.008 |
Gene Symbol | AVG ΔCt | 2−ΔCt | Fold Change * | p Value ** | Fold Up- or Down Regulation | ||
---|---|---|---|---|---|---|---|
Athlete Group | Control Group | Athlete Group | Control Group | Athlete/Control | Athlete/Control | ||
ACTB | 0.00 | 0.00 | 1.000000 | 1.000000 | 1.00 | nan | 1.00 |
hTERT | 12.76 | 13.80 | 0.000145 | 0.000070 | 2.06 | 0.0013 | 2.06 |
RV Thickness | EF | IVS | PW | LVEDD | LVM | LVEDV | VO2peak | |
---|---|---|---|---|---|---|---|---|
RV Thickness | 1.000 | |||||||
EF | −0.252 | 1.000 | ||||||
IVS | −0.108 | −0.126 | 1.000 | |||||
PW | −0.046 | −0.033 | 0.625 ** | 1.000 | ||||
LVEDD | 0.210 | −0.353 * | 0.027 | 0.122 | 1.000 | |||
LVM | −0.032 | −0.084 | −0.147 | −0.244 | 0.129 | 1.000 | ||
LVEDV | −0.253 | 0.143 | 0.282 | 0.469 ** | −0.091 | 0.024 | 1.000 | |
VO2peak | 0.472 ** | −0.054 | 0.112 | 0.114 | −0.007 | −0.146 | 0.066 | 1.000 |
hTERT | 0.133 | −0.202 | 0.135 | −0.038 | 0.070 | −0.221 | 0.141 | 0.341 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozmen, C.; Inandiklioglu, N.; Gunasti, O.; Rahimova, H.; Tepe, O.; Akilli, R.E.; Yildiz, P.O.; Kurdak, S.S.; Demirtas, M. hTERT Gene Expression and Athlete’s Heart: A Study in Middle-Aged Endurance Athletes. Genes 2025, 16, 1104. https://doi.org/10.3390/genes16091104
Ozmen C, Inandiklioglu N, Gunasti O, Rahimova H, Tepe O, Akilli RE, Yildiz PO, Kurdak SS, Demirtas M. hTERT Gene Expression and Athlete’s Heart: A Study in Middle-Aged Endurance Athletes. Genes. 2025; 16(9):1104. https://doi.org/10.3390/genes16091104
Chicago/Turabian StyleOzmen, Caglar, Nihal Inandiklioglu, Ozgur Gunasti, Hatice Rahimova, Omer Tepe, Rabia Eker Akilli, Pinar Ozmen Yildiz, Sanli Sadi Kurdak, and Mustafa Demirtas. 2025. "hTERT Gene Expression and Athlete’s Heart: A Study in Middle-Aged Endurance Athletes" Genes 16, no. 9: 1104. https://doi.org/10.3390/genes16091104
APA StyleOzmen, C., Inandiklioglu, N., Gunasti, O., Rahimova, H., Tepe, O., Akilli, R. E., Yildiz, P. O., Kurdak, S. S., & Demirtas, M. (2025). hTERT Gene Expression and Athlete’s Heart: A Study in Middle-Aged Endurance Athletes. Genes, 16(9), 1104. https://doi.org/10.3390/genes16091104