The ACTN3 R577X Nonsense Allele Is Underrepresented in Professional Volleyball Players and Associated with an Increased Risk of Muscle Injury in Female Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Participants
2.3. Genotyping
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACTN3 | α-actinin-3 |
| DNA | Deoxyribonucleic acid |
| PCR | Polymerase chain reaction |
| SNP | Single-nucleotide polymorphism |
References
- Ekstrand, J.; Hägglund, M.; Waldén, M. Injury Incidence and Injury Patterns in Professional Football: The UEFA Injury Study. Br. J. Sports Med. 2011, 45, 553–558. [Google Scholar] [CrossRef]
- Sole, C.J.; Kavanaugh, A.A.; Stone, M.H. Injuries in Collegiate Women’s Volleyball: A Four-Year Retrospective Analysis. Sports 2017, 5, 26. [Google Scholar] [CrossRef] [PubMed]
- Egorov, A.Y.; Szabo, A. The Exercise Paradox: An Interactional Model for a Clearer Conceptualization of Exercise Addiction. J. Behav. Addict. 2013, 2, 199–208. [Google Scholar] [CrossRef]
- Collins, M.; Raleigh, S.M. Genetic Risk Factors for Musculoskeletal Soft Tissue Injuries. In Genetics and Sports; Karger Publishers: Basel, Switzerland, 2009; Volume 54, pp. 136–149. [Google Scholar] [CrossRef]
- Kim, S.K.; Roos, T.R.; Roos, A.K.; Kleimeyer, J.P.; Ahmed, M.A.; Goodlin, G.T.; Fredericson, M.; Ioannidis, J.P.; Avins, A.L.; Dragoo, J.L. Genome-Wide Association Screens for Achilles Tendon and ACL Tears and Tendinopathy. PLoS ONE 2017, 12, e0170422. [Google Scholar] [CrossRef]
- Gibbon, A.; Saunders, C.J.; Collins, M.; Gamieldien, J.; September, A.V. Defining the Molecular Signatures of Achilles Tendinopathy and Anterior Cruciate Ligament Ruptures: A Whole-Exome Sequencing Approach. PLoS ONE 2018, 13, e0205860. [Google Scholar] [CrossRef]
- Boulygina, E.A.; Borisov, O.V.; Valeeva, E.V.; Semenova, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Larin, A.K.; Nabiullina, R.M.; Mavliev, F.A.; Akhatov, A.M.; et al. Whole Genome Sequencing of Elite Athletes. Biol. Sport 2020, 37, 295–304. [Google Scholar] [CrossRef]
- Zouhal, H.; Coso, J.D.; Jayavel, A.; Tourny, C.; Ravé, G.; Jebabli, N.; Clark, C.C.T.; Barthélémy, B.; Hackney, A.C.; Abderrahman, A.B. Association between ACTN3 R577X Genotype and Risk of Non-Contact Injury in Trained Athletes: A Systematic Review. J. Sport Health Sci. 2023, 12, 359–368. [Google Scholar] [CrossRef]
- Miyamoto-Mikami, E.; Zempo, H.; Kumagai, H.; Hirata, K.; Takaragawa, M.; Yoshihara, T.; Fuku, M.; Kikuchi, N.; Kamiya, N.; Miyamoto, N.; et al. Genome-Wide Association Study on Muscle Stiffness Identified Novel Locus for Predisposition to Muscle Strain Injury. Med. Sci. Sports Exerc. 2025, 57, 1202–1211. [Google Scholar] [CrossRef]
- Vincent, B.; De Bock, K.; Ramaekers, M.; Van den Eede, E.; Van Leemputte, M.; Hespel, P.; Thomis, M.A. ACTN3 (R577X) Genotype Is Associated with Fiber Type Distribution. Physiol. Genom. 2007, 32, 58–63. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, D.G.; North, K.N. ACTN3: A genetic influence on muscle function and athletic performance. Exerc. Sport Sci. Rev. 2007, 35, 30–34. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, D.G.; Seto, J.T.; Raftery, J.M.; Quinlan, K.G.; Huttley, G.A.; Hook, J.W.; Lemckert, F.A.; Kee, A.J.; Edwards, M.R.; Berman, Y.; et al. Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat. Genet. 2007, 39, 1261–1265. [Google Scholar] [CrossRef]
- McAuley, A.B.; Hughes, D.C.; Tsaprouni, L.G.; Varley, I.; Suraci, B.; Baker, J.; Herbert, A.J.; Kelly, A.L. Genetic associations with technical capabilities in English academy football players: A preliminary study. J. Sports Med. Phys. Fit. 2023, 63, 230–240. [Google Scholar] [CrossRef]
- Seto, J.T.; Quinlan, K.G.; Lek, M.; Zheng, X.F.; Garton, F.; MacArthur, D.G.; Hogarth, M.W.; Houweling, P.J.; Gregorevic, P.; Turner, N.; et al. ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling. J. Clin. Investig. 2013, 123, 4255–4263. [Google Scholar] [CrossRef]
- Garton, F.C.; Seto, J.T.; Quinlan, K.G.R.; Yang, N.; Houweling, P.J.; North, K.N. α-Actinin-3 deficiency alters muscle adaptation in response to denervation and immobilization. Hum. Mol. Genet. 2014, 23, 1879–1893. [Google Scholar] [CrossRef]
- Vincent, B.; Windelinckx, A.; Nielens, H.; Ramaekers, M.; Van Leemputte, M.; Hespel, P.; Thomis, M.A. Protective role of α-actinin-3 in the response to an acute eccentric exercise bout. J. Appl. Physiol. 2010, 109, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Kiely, J. ACTN3: More than just a gene for speed. Front. Physiol. 2017, 8, 1080. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; MacArthur, D.G.; Gulbin, J.P.; Hahn, A.G.; Beggs, A.H.; Easteal, S.; North, K. ACTN3 genotype is associated with human elite athletic performance. Am. J. Hum. Genet. 2003, 73, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; John, G.; Semenova, E.A.; Hall, E.C.R. Genomic predictors of physical activity and athletic performance. Adv. Genet. 2024, 111, 311–408. [Google Scholar] [CrossRef]
- Lee, F.X.; Houweling, P.J.; North, K.N.; Quinlan, K.G. How does α-actinin-3 deficiency alter muscle function? Mechanistic insights into ACTN3, the ‘gene for speed’. Biochim. Biophys. Acta Mol. Cell Res. 2016, 1863, 686–693. [Google Scholar] [CrossRef]
- Valuri, G.; Stevenson, M.; Finch, C.; Hamer, P.; Elliott, B. The validity of a four week self-recall of sports injuries. Inj. Prev. 2005, 11, 135–137. [Google Scholar] [CrossRef]
- Turkish Genome Project. Available online: https://tgd.tuseb.gov.tr/en (accessed on 30 June 2025).
- Barbitoff, Y.A.; Khmelkova, D.N.; Pomerantseva, E.A.; Slepchenkov, A.V.; Zubashenko, N.A.; Mironova, I.V.; Kaimonov, V.S.; Polev, D.E.; Tsay, V.V.; Glotov, A.S.; et al. Expanding the Russian allele frequency reference via cross-laboratory data integration: Insights from 7452 exome samples. Natl. Sci. Rev. 2024, 11, nwae326. [Google Scholar] [CrossRef]
- Moreland, E.; Borisov, O.V.; Semenova, E.A.; Larin, A.K.; Andryushchenko, O.N.; Andryushchenko, L.B.; Generozov, E.V.; Williams, A.G.; Ahmetov, I.I. Polygenic profile of elite strength athletes. J. Strength Cond. Res. 2022, 36, 2509–2514. [Google Scholar] [CrossRef] [PubMed]
- RUSeq Database. Available online: http://ruseq.ru (accessed on 30 June 2025).
- Opar, D.A.; Williams, M.D.; Shield, A.J. Hamstring strain injuries: Factors that lead to injury and re-injury. Sports Med. 2012, 42, 209–226. [Google Scholar] [CrossRef]
- Freckleton, G.; Pizzari, T. Risk factors for hamstring muscle strain injury in sport: A systematic review and meta-analysis. Br. J. Sports Med. 2013, 47, 351–358. [Google Scholar] [CrossRef]
- Maffulli, N.; Margiotti, K.; Longo, U.G.; Loppini, M.; Fazio, V.M.; Denaro, V. The genetics of sports injuries and athletic performance. Muscles Ligaments Tendons J. 2013, 3, 173–189. [Google Scholar] [CrossRef]
- Posthumus, M.; September, A.V.; Keegan, M.; O’Cuinneagain, D.; Van der Merwe, W.; Schwellnus, M.P.; Collins, M. Genetic risk factors for anterior cruciate ligament ruptures: COL1A1 gene variant. Br. J. Sports Med. 2009, 43, 352–356. [Google Scholar] [CrossRef]
- Pimenta, E.M.; Coelho, D.B.; Cruz, I.R.; Morandi, R.F.; Veneroso, C.E.; de Azambuja Pussieldi, G.; Carvalho, M.R.S.; Silami-Garcia, E.; De Paz Fernández, J.A. The ACTN3 genotype in soccer players in response to acute eccentric training. Eur. J. Appl. Physiol. 2012, 112, 1495–1503. [Google Scholar] [CrossRef]
- Coelho, D.B.; Pimenta, E.; Rosse, I.C.; Veneroso, C.; Becker, L.K.; Carvalho, M.R.; Pussieldi, G.; Silami-Garcia, E. The alpha-actinin-3 R577X polymorphism and physical performance in soccer players. J. Sports Med. Phys. Fit. 2016, 56, 241–248. [Google Scholar]
- Ulucan, K.; Sercan, C.; Eken, B.F.; Ülgüt, D.; Erel, Ş. Sports genetics and ACE gene relationship. İnönü Univ. J. Phys. Educ. Sports Sci. 2016, 3, 26–34. [Google Scholar]
- Wei, Q. The ACE and ACTN3 polymorphisms in female soccer athletes. Genes Environ. 2021, 43, 5. [Google Scholar] [CrossRef]
- Del Coso, J.; Rodas, G.; Soler-Aguinaga, A.; López-Del Campo, R.; Resta, R.; González-Rodenas, J.; Ferrandis, J.; Moreno-Pérez, V. ACTN3 XX genotype negatively affects running performance and increases muscle injury incidence in LaLiga football players. Genes 2024, 15, 386. [Google Scholar] [CrossRef] [PubMed]
- El Ouali, E.M.; Barthelemy, B.; Del Coso, J.; Hackney, A.C.; Laher, I.; Govindasamy, K.; Mesfioui, A.; Granacher, U.; Zouhal, H. A systematic review and meta-analysis of the association between ACTN3 R577X genotypes and performance in endurance versus power athletes and non-athletes. Sports Med. Open 2024, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Maciejewska-Skrendo, A.; Sawczuk, M.; Cięszczyk, P.; Ahmetov, I.I. Genes and power athlete status. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: London, UK, 2019; pp. 41–72. [Google Scholar] [CrossRef]
- Massidda, M.; Flore, L.; Cugia, P.; Piras, F.; Scorcu, M.; Kikuchi, N.; Cięszczyk, P.; Maciejewska-Skrendo, A.; Tocco, F.; Calò, C.M. Association between total genotype score and muscle injuries in top-level football players: A pilot study. Sports Med. Open 2024, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Seto, J.T.; Chan, S.; Turner, N.; MacArthur, D.G.; Raftery, J.M.; Berman, Y.D.; Quinlan, K.G.; Cooney, G.J.; Head, S.; Yang, N.; et al. The effect of α-actinin-3 deficiency on muscle aging. Exp. Gerontol. 2011, 46, 292–302. [Google Scholar] [CrossRef]
- Clos, E.; Pruna, R.; Lundblad, M.; Artells, R.; Esquirol Caussa, J. ACTN3 single nucleotide polymorphism is associated with non-contact musculoskeletal soft-tissue injury incidence in elite professional football players. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 4055–4061. [Google Scholar] [CrossRef]
- Massidda, M.; Voisin, S.; Culigioni, C.; Piras, F.; Cugia, P.; Yan, X.; Eynon, N.; Calò, C.M. ACTN3 R577X polymorphism is associated with the incidence and severity of injuries in professional football players. Clin. J. Sport Med. 2019, 29, 57–61. [Google Scholar] [CrossRef]
- Rodas, G.; Moreno-Pérez, V.; Del Coso, J.; Florit, D.; Osaba, L.; Lucia, A. Alpha-Actinin-3 deficiency might affect recovery from non-contact muscle injuries: Preliminary findings in a top-level soccer team. Genes 2021, 12, 769. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Donnikov, A.E.; Trofimov, D.Y. ACTN3 genotype is associated with testosterone levels of athletes. Biol. Sport 2014, 31, 105–108. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Ratamess, N.A.; Nindl, B.C. Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise. J. Appl. Physiol. 2017, 122, 549–558. [Google Scholar] [CrossRef]
- Roeszler, K.N.; See, M.; Meehan, L.R.; Lima, G.; Kolliari-Turner, A.; Alexander, S.E.; Landen, S.; Wood, H.D.; Tiong, C.F.; Chen, W.; et al. ACTN3 genotype influences androgen response in developing murine skeletal muscle. Sci. Adv. 2025, 11, eadw1059. [Google Scholar] [CrossRef]
- Petr, M.; Thiel, D.; Kateřina, K.; Brož, P.; Malý, T.; Zahálka, F.; Vostatková, P.; Wilk, M.; Chycki, J.; Stastny, P. Speed and power-related gene polymorphisms associated with playing position in elite soccer players. Biol. Sport 2022, 39, 355–366. [Google Scholar] [CrossRef]
- Gutiérrez-Hellín, J.; Baltazar-Martins, G.; Aguilar-Navarro, M.; Ruiz-Moreno, C.; Oliván, J.; Del Coso, J. Effect of ACTN3 R577X genotype on injury epidemiology in elite endurance runners. Genes 2021, 12, 76. [Google Scholar] [CrossRef]
- Kim, J.H.; Jung, E.S.; Kim, C.H.; Youn, H.; Kim, H.R. Genetic associations of body composition, flexibility and injury risk with ACE, ACTN3 and COL5A1 polymorphisms in Korean ballerinas. J. Exerc. Nutr. Biochem. 2014, 18, 205–214. [Google Scholar] [CrossRef]
- Shang, X.; Li, Z.; Cao, X.; Xie, C.; Gu, M.; Chen, P.; Yang, X.; Cai, J. The association between the ACTN3 R577X polymorphism and noncontact acute ankle sprains. J. Sports Sci. 2015, 33, 1775–1779. [Google Scholar] [CrossRef]
- Wang, G.; Tanaka, M.; Eynon, N.; North, K.N.; Williams, A.G.; Collins, M.; Moran, C.N.; Britton, S.L.; Fuku, N.; Ashley, E.A.; et al. The Future of Genomic Research in Athletic Performance and Adaptation to Training. Genet. Sports 2016, 61, 55–67. [Google Scholar] [CrossRef]
- Lim, T.; Santiago, C.; Pareja-Galeano, H.; Iturriaga, T.; Sosa-Pedreschi, A.; Fuku, N.; Pérez-Ruiz, M.; Yvert, T. Genetic variations associated with non-contact muscle injuries in sport: A systematic review. Scand. J. Med. Sci. Sports 2021, 31, 2014–2032. [Google Scholar] [CrossRef]
- Hall, E.C.R.; Semenova, E.A.; Bondareva, E.A.; Borisov, O.V.; Andryushchenko, O.N.; Andryushchenko, L.B.; Zmijewski, P.; Generozov, E.V.; Ahmetov, I.I. Association of muscle fiber composition with health and exercise-related traits in athletes and untrained subjects. Biol. Sport 2021, 38, 659–666. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Stepanova, A.A.; Biktagirova, E.M.; Semenova, E.A.; Shchuplova, I.S.; Bets, L.V.; Andryushchenko, L.B.; Borisov, O.V.; Andryushchenko, O.N.; Generozov, E.V.; et al. Is testosterone responsible for athletic success in female athletes? J. Sports Med. Phys. Fit. 2020, 60, 1377–1382. [Google Scholar] [CrossRef] [PubMed]
- Eynon, N.; Nasibulina, E.S.; Banting, L.K.; Cieszczyk, P.; Maciejewska-Karlowska, A.; Sawczuk, M.; Bondareva, E.A.; Shagimardanova, R.R.; Raz, M.; Sharon, Y.; et al. The FTO A/T polymorphism and elite athletic performance: A study involving three groups of European athletes. PLoS ONE 2013, 8, e60570. [Google Scholar] [CrossRef] [PubMed]
- Massidda, M.; Miyamoto-Mikami, E.; Kumagai, H.; Ikeda, H.; Shimasaki, Y.; Yoshimura, M.; Cugia, P.; Piras, F.; Scorcu, M.; Kikuchi, N.; et al. Association between the ACE I/D polymorphism and muscle injuries in Italian and Japanese elite football players. J. Sports Sci. 2020, 38, 2423–2429. [Google Scholar] [CrossRef]
- Kim, S.K.; Nguyen, C.; Jones, K.B.; Tashjian, R.Z. A genome-wide association study for shoulder impingement and rotator cuff disease. J. Shoulder Elb. Surg. 2021, 30, 2134–2145. [Google Scholar] [CrossRef] [PubMed]
- Fukuyama, Y.; Murakami, H.; Iemitsu, M. Single nucleotide polymorphisms and tendon/ligament injuries in athletes: A systematic review and meta-analysis. Int. J. Sports Med. 2025, 46, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Fuku, N.; Miyamoto-Mikami, E.; Tanaka, M.; Miyachi, M.; Murakami, H.; Mitchell, B.D.; Morrison, E.; Ahmetov, I.; Generozov, E.V.; et al. Multi-Phase, Multi-Ethnic GWAS Uncovers Putative Loci in Predisposition to Elite Sprint and Power Performance, Health and Disease. Biol. Sport 2025, 42, 141–159. [Google Scholar] [CrossRef] [PubMed]

| Variables | Values | |
|---|---|---|
| Age | ||
| Mean (SD) | 26.2 (4.65) | |
| Median (min–max) | 25.5 (19–38) | |
| Height (cm) | ||
| Mean (SD) | 178.9 (8.54) | |
| Median (min–max) | 180.0 (158–199) | |
| Body mass (kg) | ||
| Mean (SD) | 67.9 (7.6) | |
| Median (min–max) | 68.5 (50–83) | |
| Position | n | % |
| Libero | 12 | 24.0 |
| Middle player | 15 | 30.0 |
| Setter | 9 | 18.0 |
| Spiker | 14 | 28.0 |
| Group | n | ACTN3 Genotypes | Alleles, % | p Value | |||
|---|---|---|---|---|---|---|---|
| RR | RX | XX | R Allele | X Allele | |||
| Turkish volleyball players | 50 | 19 | 21 | 10 | 59.0 | 41.0 | 0.2752 |
| Turkish controls | 557 | NA | NA | 127 | 53.3 | 46.7 | |
| Russian volleyball players | 137 | 61 | 62 | 14 | 67.2 | 32.8 | 0.0285 * |
| Russian controls | 4638 | NA | NA | 716 | 60.6 | 39.4 | |
| Groups | n | ACTN3 Genotypes | |||||
|---|---|---|---|---|---|---|---|
| RR | RX | XX | |||||
| n | % | n | % | n | % | ||
| Injured athletes | 30 | 11 | 57.9 | 10 | 47.6 | 9 | 90.0 * |
| Non-injured athletes | 20 | 8 | 42.1 | 11 | 52.4 | 1 | 10.0 |
| Variables | n | Age Median (Min–Max) | Height Median (Min–Max) | Body Mass Median (Min–Max) |
|---|---|---|---|---|
| Genotype | ||||
| RR | 19 | 26.0 (19–38) | 180.0 (158–188) | 69.0 (50–83) |
| RX | 21 | 25.0 (19–29) | 180.0 (161–199) | 68.0 (50–83) |
| XX | 10 | 26.0 (21–37) | 181.0 (170–196) | 69.0 (63–83) |
| p | 0.691 a | 0.834 a | 0.957 a | |
| Post hoc | - | - | - | |
| Position | ||||
| Libero | 12 | 22.5 (20–38) | 168.0 (158–179) | 62.0 (50–69) |
| Middle player | 15 | 27.0 (19–37) | 185.0 (173–196) | 70.0 (61–83) |
| Setter | 9 | 26.0 (21–36) | 180.0 (175–183) | 65.0 (59–76) |
| Spiker | 14 | 27.0 (19–34) | 182.0 (174–199) | 72.0 (60–83) |
| p | 0.460 a | <0.001 a | <0.001 a | |
| Post hoc | - | 1–3, 1–4 | 1–2, 1–4 | |
| Muscle injuries | ||||
| Yes | 30 | 24.0 (19–38) | 175.0 (158–199) | 66.0 (50–83) |
| No | 20 | 27.5 (19–37) | 181.5 (168–196) | 69.0 (59–83) |
| p | 0.099 b | 0.132 b | 0.190 b |
| Model | Adjustments | Or (XX vs. Non-XX) | 95% Ci (Penalized) | Model Lr p |
|---|---|---|---|---|
| Unadjusted | 5.74 | 1.16–57.09 | 0.031 | |
| Adjusted 1 (primary) | Age + Playing position | 5.92 | 1.12–60.98 | 0.092 |
| Adjusted 2 (sensitivity) | Age + Position + Height + Body mass | 5.22 | 1.02–52.00 | 0.314 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerit, M.; Tuncer, S.Y.; Piri, M.M.; Anılır, M.; John, G.; Semenova, E.A.; Larin, A.K.; Generozov, E.V.; Ahmetov, I.I.; Ulucan, K.; et al. The ACTN3 R577X Nonsense Allele Is Underrepresented in Professional Volleyball Players and Associated with an Increased Risk of Muscle Injury in Female Players. Genes 2025, 16, 1076. https://doi.org/10.3390/genes16091076
Cerit M, Tuncer SY, Piri MM, Anılır M, John G, Semenova EA, Larin AK, Generozov EV, Ahmetov II, Ulucan K, et al. The ACTN3 R577X Nonsense Allele Is Underrepresented in Professional Volleyball Players and Associated with an Increased Risk of Muscle Injury in Female Players. Genes. 2025; 16(9):1076. https://doi.org/10.3390/genes16091076
Chicago/Turabian StyleCerit, Mesut, Selin Yıldırım Tuncer, Muhammed Mustafa Piri, Murat Anılır, George John, Ekaterina A. Semenova, Andrey K. Larin, Edward V. Generozov, Ildus I. Ahmetov, Korkut Ulucan, and et al. 2025. "The ACTN3 R577X Nonsense Allele Is Underrepresented in Professional Volleyball Players and Associated with an Increased Risk of Muscle Injury in Female Players" Genes 16, no. 9: 1076. https://doi.org/10.3390/genes16091076
APA StyleCerit, M., Tuncer, S. Y., Piri, M. M., Anılır, M., John, G., Semenova, E. A., Larin, A. K., Generozov, E. V., Ahmetov, I. I., Ulucan, K., & Szabo, A. (2025). The ACTN3 R577X Nonsense Allele Is Underrepresented in Professional Volleyball Players and Associated with an Increased Risk of Muscle Injury in Female Players. Genes, 16(9), 1076. https://doi.org/10.3390/genes16091076

