Evaluation of Long-Read RNA Sequencing Procedures for Novel Isoform Identification and Quantification in Human Whole Blood
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Whole Blood RNA Isolation and lrRNA-Seq Library Creation
2.3. Sequence Analysis Processing
3. Results
3.1. Known and Novel Isoforms Identified in Whole Blood
3.2. Comparison of Splice Junction Profiles and Isoform Characteristics Using GRCh38 and T2T-CHM13 References in SQANTI Analysis
3.3. Features of Coding and Non-Coding Isoforms
3.4. Features of Isoform Subcategories in Whole Blood
3.5. Expression Levels of lrRNA-Seq Identified Isoforms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CV | Coefficient of Variation |
FSM | Full Splice Match |
GRCh38 | Genome Reference Consortium Human Build 38 |
GTF | Gene Transfer Format |
ISM | Incomplete Splice Match |
lrRNA-seq | long-read RNA sequencing |
NIC | Novel in Catalog |
NNC | Novel Not in Catalog |
SJs | Splice Junctions |
T2T | Telomere-to-Telomere |
T2T-CHM13 | Telomere-to-Telomere assembly of the CHM13 cell line |
TPM | Transcripts per Million |
TSS | Transcription Start Site |
References
- Sakai, Y.; Nasti, A.; Takeshita, Y.; Okumura, M.; Kitajima, S.; Honda, M.; Wada, T.; Nakamura, S.; Takamura, T.; Tamura, T.; et al. Eight-Year Longitudinal Study of Whole Blood Gene Expression Profiles in Individuals Undergoing Long-Term Medical Follow-Up. Sci. Rep. 2021, 11, 16564. [Google Scholar] [CrossRef]
- Pardo-Palacios, F.J.; Wang, D.; Reese, F.; Diekhans, M.; Carbonell-Sala, S.; Williams, B.; Loveland, J.E.; De María, M.; Adams, M.S.; Balderrama-Gutierrez, G.; et al. Systematic Assessment of Long-Read RNA-Seq Methods for Transcript Identification and Quantification. Nat. Methods 2024, 21, 1349–1363. [Google Scholar] [CrossRef]
- De Paoli-Iseppi, R.; Gleeson, J.; Clark, M.B. Isoform Age-Splice Isoform Profiling Using Long-Read Technologies. Front. Mol. Biosci. 2021, 8, 711733. [Google Scholar] [CrossRef]
- Ahsan, M.U.; Liu, Q.; Perdomo, J.E.; Fang, L.; Wang, K. A Survey of Algorithms for the Detection of Genomic Structural Variants from Long-Read Sequencing Data. Nat. Methods 2023, 20, 1143–1158. [Google Scholar] [CrossRef]
- Christofi, T.; Zaravinos, A. RNA Editing in the Forefront of Epitranscriptomics and Human Health. J. Transl. Med. 2019, 17, 319. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.D.; Nam, S.W. Pathogenic Diversity of RNA Variants and RNA Variation-Associated Factors in Cancer Development. Exp. Mol. Med. 2020, 52, 582–593. [Google Scholar] [CrossRef]
- National Library of Medicine Homo Sapiens Genome Assembly GRCh38. Available online: https://www.ncbi.nlm.nih.gov/data-hub/assembly/GCF_000001405.26/ (accessed on 4 September 2024).
- Nurk, S.; Koren, S.; Rhie, A.; Rautiainen, M.; Bzikadze, A.V.; Mikheenko, A.; Vollger, M.R.; Altemose, N.; Uralsky, L.; Gershman, A.; et al. The Complete Sequence of a Human Genome. Science 2022, 376, 44–53. [Google Scholar] [CrossRef] [PubMed]
- National Human Genome Research Institute Telomere-to-Telomere. Available online: https://www.genome.gov/about-genomics/telomere-to-telomere (accessed on 4 September 2024).
- Perez, G.; Barber, G.P.; Benet-Pages, A.; Casper, J.; Clawson, H.; Diekhans, M.; Fischer, C.; Gonzalez, J.N.; Hinrichs, A.S.; Lee, C.M.; et al. The UCSC Genome Browser Database: 2025 Update. Nucleic Acids Res. 2025, 53, D1243–D1249. [Google Scholar] [CrossRef] [PubMed]
- Schneider, V.A.; Graves-Lindsay, T.; Howe, K.; Bouk, N.; Chen, H.-C.; Kitts, P.A.; Murphy, T.D.; Pruitt, K.D.; Thibaud-Nissen, F.; Albracht, D.; et al. Evaluation of GRCh38 and de Novo Haploid Genome Assemblies Demonstrates the Enduring Quality of the Reference Assembly. Genome Res. 2017, 27, 849–864. [Google Scholar] [CrossRef]
- Behera, S.; LeFaive, J.; Orchard, P.; Mahmoud, M.; Paulin, L.F.; Farek, J.; Soto, D.C.; Parker, S.C.J.; Smith, A.V.; Dennis, M.Y.; et al. FixItFelix: Improving Genomic Analysis by Fixing Reference Errors. Genome Biol. 2023, 24, 31. [Google Scholar] [CrossRef] [PubMed]
- Altemose, N.; Logsdon, G.A.; Bzikadze, A.V.; Sidhwani, P.; Langley, S.A.; Caldas, G.V.; Hoyt, S.J.; Uralsky, L.; Ryabov, F.D.; Shew, C.J.; et al. Complete Genomic and Epigenetic Maps of Human Centromeres. Science 2022, 376, eabl4178. [Google Scholar] [CrossRef]
- Aganezov, S.; Yan, S.M.; Soto, D.C.; Kirsche, M.; Zarate, S.; Avdeyev, P.; Taylor, D.J.; Shafin, K.; Shumate, A.; Xiao, C.; et al. A Complete Reference Genome Improves Analysis of Human Genetic Variation. Science 2022, 376, eabl3533. [Google Scholar] [CrossRef] [PubMed]
- Gershman, A.; Sauria, M.E.G.; Guitart, X.; Vollger, M.R.; Hook, P.W.; Hoyt, S.J.; Jain, M.; Shumate, A.; Razaghi, R.; Koren, S.; et al. Epigenetic Patterns in a Complete Human Genome. Science 2022, 376, eabj5089. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Ding, T.; Chang, T.; Ruan, J.; Yang, J.; Ma, M.; Liu, J.; Liu, Z.; Jiao, S.; Wu, J.; et al. Nanopore Sequencing with T2T-CHM13 for Accurate Detection and Preventing the Transmission of Structural Rearrangements in Highly Repetitive Heterochromatin Regions in Human Embryos. Clin. Transl. Med. 2024, 14, e1612. [Google Scholar] [CrossRef]
- Alkan, C.; Carbone, L.; Dennis, M.; Ernst, J.; Evrony, G.; Girirajan, S.; Leung, D.C.Y.; Cheng, C.C.; MacAlpine, D.; Ni, T. Implications of the First Complete Human Genome Assembly. Genome Res. 2022, 32, 595–598. [Google Scholar] [CrossRef]
- Hu, Y.; Fang, L.; Chen, X.; Zhong, J.F.; Li, M.; Wang, K. LIQA: Long-Read Isoform Quantification and Analysis. Genome Biol. 2021, 22, 182. [Google Scholar] [CrossRef] [PubMed]
- Grigorev, K.; Nelson, T.M.; Overbey, E.G.; Houerbi, N.; Kim, J.; Najjar, D.; Damle, N.; Afshin, E.E.; Ryon, K.A.; Thierry-Mieg, J.; et al. Direct RNA Sequencing of Astronaut Blood Reveals Spaceflight-Associated m6A Increases and Hematopoietic Transcriptional Responses. Nat. Commun. 2024, 15, 4950. [Google Scholar] [CrossRef]
- Cornaby, C.; Montgomery, M.C.; Liu, C.; Weimer, E.T. Unique Molecular Identifier-Based High-Resolution HLA Typing and Transcript Quantitation Using Long-Read Sequencing. Front. Genet. 2022, 13, 901377. [Google Scholar] [CrossRef]
- Schwenk, V.; Leal Silva, R.M.; Scharf, F.; Knaust, K.; Wendlandt, M.; Häusser, T.; Pickl, J.M.A.; Steinke-Lange, V.; Laner, A.; Morak, M.; et al. Transcript Capture and Ultradeep Long-Read RNA Sequencing (CAPLRseq) to Diagnose HNPCC/Lynch Syndrome. J. Med. Genet. 2023, 60, 747–759. [Google Scholar] [CrossRef]
- Hoyt, S.J.; Storer, J.M.; Hartley, G.A.; Grady, P.G.S.; Gershman, A.; de Lima, L.G.; Limouse, C.; Halabian, R.; Wojenski, L.; Rodriguez, M.; et al. From Telomere to Telomere: The Transcriptional and Epigenetic State of Human Repeat Elements. Science 2022, 376, eabk3112. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Zou, Y.; Zhang, S.; Xia, M.; Fu, L.; Vollger, M.R.; Chen, N.-C.; Taylor, D.J.; Harvey, W.T.; et al. Characterization of Large-Scale Genomic Differences in the First Complete Human Genome. Genome Biol. 2023, 24, 157. [Google Scholar] [CrossRef]
- Nasti, A.; Okumura, M.; Takeshita, Y.; Ho, T.T.B.; Sakai, Y.; Sato, T.-A.; Nomura, C.; Goto, H.; Nakano, Y.; Urabe, T.; et al. The Declining Insulinogenic Index Correlates with Inflammation and Metabolic Dysregulation in Non-Obese Individuals Assessed by Blood Gene Expression. Diabetes Res. Clin. Pract. 2024, 208, 111090. [Google Scholar] [CrossRef]
- Tardaguila, M.; De La Fuente, L.; Marti, C.; Pereira, C.; Pardo-Palacios, F.J.; Del Risco, H.; Ferrell, M.; Mellado, M.; Macchietto, M.; Verheggen, K.; et al. SQANTI: Extensive Characterization of Long-Read Transcript Sequences for Quality Control in Full-Length Transcriptome Identification and Quantification. Genome Res. 2018, 28, 396–411. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Palacios, F.J.; Arzalluz-Luque, A.; Kondratova, L.; Salguero, P.; Mestre-Tomás, J.; Amorín, R.; Estevan-Morió, E.; Liu, T.; Nanni, A.; McIntyre, L.; et al. SQANTI3: Curation of Long-Read Transcriptomes for Accurate Identification of Known and Novel Isoforms. Nat. Methods 2024, 21, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Everitt, B.S.; Skrondal, A. The Cambridge Dictionary of Statistics; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Parada, G.E.; Munita, R.; Cerda, C.A.; Gysling, K. A Comprehensive Survey of Non-Canonical Splice Sites in the Human Transcriptome. Nucleic Acids Res. 2014, 42, 10564–10578. [Google Scholar] [CrossRef]
- Cocquet, J.; Chong, A.; Zhang, G.; Veitia, R.A. Reverse Transcriptase Template Switching and False Alternative Transcripts. Genomics 2006, 88, 127–131. [Google Scholar] [CrossRef]
- Babiceanu, M.; Qin, F.; Xie, Z.; Jia, Y.; Lopez, K.; Janus, N.; Facemire, L.; Kumar, S.; Pang, Y.; Qi, Y.; et al. Recurrent Chimeric Fusion RNAs in Non-Cancer Tissues and Cells. Nucleic Acids Res. 2016, 44, 2859–2872. [Google Scholar] [CrossRef]
- Levin, J.Z.; Berger, M.F.; Adiconis, X.; Rogov, P.; Melnikov, A.; Fennell, T.; Nusbaum, C.; Garraway, L.A.; Gnirke, A. Targeted Next-Generation Sequencing of a Cancer Transcriptome Enhances Detection of Sequence Variants and Novel Fusion Transcripts. Genome Biol. 2009, 10, R115. [Google Scholar] [CrossRef]
- Pintarelli, G.; Dassano, A.; Cotroneo, C.E.; Galvan, A.; Noci, S.; Piazza, R.; Pirola, A.; Spinelli, R.; Incarbone, M.; Palleschi, A.; et al. Read-through Transcripts in Normal Human Lung Parenchyma Are down-Regulated in Lung Adenocarcinoma. Oncotarget 2016, 7, 27889–27898. [Google Scholar] [CrossRef]
- Yoshihara, K.; Wang, Q.; Torres-Garcia, W.; Zheng, S.; Vegesna, R.; Kim, H.; Verhaak, R.G.W. The Landscape and Therapeutic Relevance of Cancer-Associated Transcript Fusions. Oncogene 2015, 34, 4845–4854. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Liang, W.-W.; Foltz, S.M.; Mutharasu, G.; Jayasinghe, R.G.; Cao, S.; Liao, W.-W.; Reynolds, S.M.; Wyczalkowski, M.A.; Yao, L.; et al. Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. Cell Rep. 2018, 23, 227–238.e3. [Google Scholar] [CrossRef]
- Varley, K.E.; Gertz, J.; Roberts, B.S.; Davis, N.S.; Bowling, K.M.; Kirby, M.K.; Nesmith, A.S.; Oliver, P.G.; Grizzle, W.E.; Forero, A.; et al. Recurrent Read-through Fusion Transcripts in Breast Cancer. Breast Cancer Res. Treat. 2014, 146, 287–297. [Google Scholar] [CrossRef]
- Mitelman, F.; Johansson, B.; Mertens, F. Mitelman Database Chromosome Aberrations and Gene Fusions in Cancer. Available online: https://mitelmandatabase.isb-cgc.org/ (accessed on 3 January 2025).
- The Cancer Genome Atlas Research Network. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. N. Engl. J. Med. 2016, 374, 135–145. [Google Scholar] [CrossRef]
- Sumitomo, S.; Nagafuchi, Y.; Tsuchida, Y.; Tsuchiya, H.; Ota, M.; Ishigaki, K.; Suzuki, A.; Kochi, Y.; Fujio, K.; Yamamoto, K. Transcriptome Analysis of Peripheral Blood from Patients with Rheumatoid Arthritis: A Systematic Review. Inflamm. Regen. 2018, 38, 21. [Google Scholar] [CrossRef]
- De Sota, R.E.; Quake, S.R.; Sninsky, J.J.; Toden, S. Decoding Bioactive Signals of the RNA Secretome: The Cell-Free Messenger RNA Catalogue. Expert Rev. Mol. Med. 2024, 26, e12. [Google Scholar] [CrossRef]
- Cao, X.; Zhou, X.; Chen, S.; Xu, C. Integration of Transcriptomics and Metabolomics Reveals the Responses of the Maternal Circulation and Maternal-Fetal Interface to LPS-Induced Preterm Birth in Mice. Front. Immunol. 2023, 14, 1213902. [Google Scholar] [CrossRef]
- Humphrey, J.; Brophy, E.; Kosoy, R.; Zeng, B.; Coccia, E.; Mattei, D.; Ravi, A.; Efthymiou, A.G.; Navarro, E.; Muller, B.Z.; et al. Long-Read RNA-Seq Atlas of Novel Microglia Isoforms Elucidates Disease-Associated Genetic Regulation of Splicing. medRxiv 2023. [Google Scholar] [CrossRef]
- Aguzzoli Heberle, B.; Brandon, J.A.; Page, M.L.; Nations, K.A.; Dikobe, K.I.; White, B.J.; Gordon, L.A.; Fox, G.A.; Wadsworth, M.E.; Doyle, P.H.; et al. Mapping Medically Relevant RNA Isoform Diversity in the Aged Human Frontal Cortex with Deep Long-Read RNA-Seq. Nat. Biotechnol. 2025, 43, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Ament, I.H.; DeBruyne, N.; Wang, F.; Lin, L. Long-Read RNA Sequencing: A Transformative Technology for Exploring Transcriptome Complexity in Human Diseases. Mol. Ther. 2025, 33, 883–894. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, J.; Zhang, W. Antisense RNA: The New Favorite in Genetic Research. J. Zhejiang Univ. Sci. B 2018, 19, 739–749. [Google Scholar] [CrossRef]
- Liu, B.; Xiang, W.; Liu, J.; Tang, J.; Wang, J.; Liu, B.; Long, Z.; Wang, L.; Yin, G.; Liu, J. The Regulatory Role of Antisense lncRNAs in Cancer. Cancer Cell Int. 2021, 21, 459. [Google Scholar] [CrossRef] [PubMed]
- Hangauer, M.J.; Vaughn, I.W.; McManus, M.T. Pervasive Transcription of the Human Genome Produces Thousands of Previously Unidentified Long Intergenic Noncoding RNAs. PLoS Genet. 2013, 9, e1003569. [Google Scholar] [CrossRef]
- Ransohoff, J.D.; Wei, Y.; Khavari, P.A. The Functions and Unique Features of Long Intergenic Non-Coding RNA. Nat. Rev. Mol. Cell Biol. 2018, 19, 143–157. [Google Scholar] [CrossRef]
- National Library of Medicine Pubmed. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 3 January 2025).
- Miga, K.H.; Newton, Y.; Jain, M.; Altemose, N.; Willard, H.F.; Kent, W.J. Centromere Reference Models for Human Chromosomes X and Y Satellite Arrays. Genome Res. 2014, 24, 697–707. [Google Scholar] [CrossRef]
- Chaisson, M.J.P.; Huddleston, J.; Dennis, M.Y.; Sudmant, P.H.; Malig, M.; Hormozdiari, F.; Antonacci, F.; Surti, U.; Sandstrom, R.; Boitano, M.; et al. Resolving the Complexity of the Human Genome Using Single-Molecule Sequencing. Nature 2015, 517, 608–611. [Google Scholar] [CrossRef]
- Wagner, J.; Olson, N.D.; Harris, L.; McDaniel, J.; Cheng, H.; Fungtammasan, A.; Hwang, Y.-C.; Gupta, R.; Wenger, A.M.; Rowell, W.J.; et al. Curated Variation Benchmarks for Challenging Medically Relevant Autosomal Genes. Nat. Biotechnol. 2022, 40, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; Wang, Z.; Pe’er, D.; Danko, C.G. Cell Type and Gene Expression Deconvolution with BayesPrism Enables Bayesian Integrative Analysis across Bulk and Single-Cell RNA Sequencing in Oncology. Nat. Cancer 2022, 3, 505–517. [Google Scholar] [CrossRef]
- Aoki, Y.; Taguchi, K.; Anzawa, H.; Kawashima, J.; Ishida, N.; Otsuki, A.; Hasegawa, A.; Baird, L.; Suzuki, T.; Motoike, I.N.; et al. Whole Blood Transcriptome Analysis for Age- and Gender-Specific Gene Expression Profiling in Japanese Individuals. J. Biochem. 2024, 175, 611–627. [Google Scholar] [CrossRef]
- Gal-Oz, S.T.; Maier, B.; Yoshida, H.; Seddu, K.; Elbaz, N.; Czysz, C.; Zuk, O.; Stranger, B.E.; Ner-Gaon, H.; Shay, T. ImmGen Report: Sexual Dimorphism in the Immune System Transcriptome. Nat. Commun. 2019, 10, 4295. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okada, H.; Nasti, A.; Sakai, Y.; Takeshita, Y.; Iwabuchi, S.; Yagi, H.; Hashiba, T.; Takata, N.; Sato, T.-A.; Urabe, T.; et al. Evaluation of Long-Read RNA Sequencing Procedures for Novel Isoform Identification and Quantification in Human Whole Blood. Genes 2025, 16, 1075. https://doi.org/10.3390/genes16091075
Okada H, Nasti A, Sakai Y, Takeshita Y, Iwabuchi S, Yagi H, Hashiba T, Takata N, Sato T-A, Urabe T, et al. Evaluation of Long-Read RNA Sequencing Procedures for Novel Isoform Identification and Quantification in Human Whole Blood. Genes. 2025; 16(9):1075. https://doi.org/10.3390/genes16091075
Chicago/Turabian StyleOkada, Hikari, Alessandro Nasti, Yoshio Sakai, Yumie Takeshita, Sadahiro Iwabuchi, Ho Yagi, Tomomi Hashiba, Noboru Takata, Taka-Aki Sato, Takeshi Urabe, and et al. 2025. "Evaluation of Long-Read RNA Sequencing Procedures for Novel Isoform Identification and Quantification in Human Whole Blood" Genes 16, no. 9: 1075. https://doi.org/10.3390/genes16091075
APA StyleOkada, H., Nasti, A., Sakai, Y., Takeshita, Y., Iwabuchi, S., Yagi, H., Hashiba, T., Takata, N., Sato, T.-A., Urabe, T., Nakamura, S., Takamura, T., Yamashita, T., Tamura, T., Matsubara, K., & Kaneko, S. (2025). Evaluation of Long-Read RNA Sequencing Procedures for Novel Isoform Identification and Quantification in Human Whole Blood. Genes, 16(9), 1075. https://doi.org/10.3390/genes16091075