Exploring Copy Number Variants in a Cohort of Children Affected by ADHD: Clinical Investigation and Translational Insights
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Clinical Assessment
2.4. Genetic Analysis
2.5. Array CGH Data Analysis and CNV Classification
2.6. Statistical Approach
3. Results
3.1. Genetic Findings
3.2. Participants’ Characteristics
3.2.1. Physical Measures
3.2.2. Epilepsy and EEG Anomalies
3.2.3. MRI Studies
3.2.4. Behavioral Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADHD | Attention Deficit Hyperactivity Disorder |
CNV | Copy Number Variation |
MRI | Magnetic Resonance Imaging |
EEG | Electroencephalogram |
CGH | Comparative Genomic Hybridization |
CPRS-R:S | Conners’ Parent Rating Scale (Revised): Short Form |
CBCL | Child Behavior Checklist |
DSM-5 | Diagnostic and Statistical Manual 5 |
ICD-11 | International Classification of Diseases, 11th edition |
DLFPC | Dorsolateral Prefrontal Cortex |
OCD | Obsessive–Compulsive Disorder |
ASD | Autism Spectrum Disorder |
SNPs | Single-Nucleotide Polymorphisms |
TS | Tourette Syndrome |
PC-CNVs | Potential Causative Copy Number Variations |
NC-CNVs | Non-causative Copy Number Variations |
W-CNVs | Without Copy Number Variations |
WISC-IV | Wechsler Intelligence Scale for Children |
IQ | Intelligence Quotient |
ID | Intellectual Disability |
ADI-R | Autism Diagnostic Interview (Revised) |
ADOS | Autism Diagnostic Observation Schedule |
DDE-2 | Dictation and Decoding—2nd Edition |
AC-MT | AC—Matematica. Abilità Cognitive in Matematica |
MT | MT Reading Tests |
DCD | Developmental Coordination Disorder |
ABC-2 | Autism Behavior Checklist—Second Edition |
DGV | Database of Genomic Variants |
IRCCS | Istituto di Ricovero e Cura a Carattere Scientifico |
OMIM | Online Mendelian Inheritance in Man |
VOUS | Variant of Uncertain Significance |
SD | Standard Deviation |
ANOVA | Analysis of Variance |
DLD | Developmental Language Disorder |
SLD | Specific Learning Disabilities |
ODD | Oppositional Defiant Disorder |
BIF | Borderline Intellectual Functioning |
References
- Faraone, S.V.; Asherson, P.; Banaschewski, T.; Biederman, J.; Buitelaar, J.K.; Ramos-Quiroga, J.A.; Rohde, L.A.; Sonuga-Barke, E.J.S.; Tannock, R.; Franke, B. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Primers 2015, 1, 15020. [Google Scholar] [CrossRef]
- Rizzo, R.; Gulisano, M. Clinical pharmacology of comorbid attention deficit hyperactivity disorder in Tourette syndrome. Int. Rev. Neurobiol. 2013, 112, 415–444. [Google Scholar] [CrossRef]
- Faraone, S.V.; Bellgrove, M.A.; Brikell, I.; Cortese, S.; Hartman, C.A.; Hollis, C.; Newcorn, J.H.; Philipsen, A.; Polanczyk, G.V.; Rubia, K. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Primers 2024, 10, 11, Erratum in Nat. Rev. Dis. Primers 2024, 10, 29. https://doi.org/10.1038/s41572-024-00518-w. [Google Scholar] [CrossRef]
- Faraone, S.V.; Biederman, J.; Mick, E. The age-dependent decline of attention deficit hyperactivity disorder: A meta-analysis of follow-up studies. Psychol. Med. 2006, 36, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Magnus, W.; Nazir, S.; Anilkumar, A.C.; Shaban, K. Attention Deficit Hyperactivity Disorder; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Wehmeier, P.M.; Schacht, A.; Barkley, R.A. Social and emotional impairment in children and adolescents with ADHD and the impact on quality of life. J. Adolesc. Health. 2010, 46, 209–217. [Google Scholar] [CrossRef]
- Faraone, S.V.; Banaschewski, T.; Coghill, D.; Zheng, Y.; Biederman, J.; Bellgrove, M.A.; Newcorn, J.H.; Gignac, M.; Al Saud, N.M.; Manor, I.; et al. The World Federation of ADHD International Consensus Statement: 208 Evidence-based conclusions about the disorder. Neurosci. Biobehav. Rev. 2021, 128, 789–818. [Google Scholar] [CrossRef] [PubMed]
- Kosheleff, A.R.; Mason, O.; Jain, R.; Koch, J.; Rubin, J. Functional Impairments Associated with ADHD in Adulthood and the Impact of Pharmacological Treatment. J. Atten. Disord. 2023, 27, 669–697. [Google Scholar] [CrossRef]
- Dalsgaard, S.; Thorsteinsson, E.; Trabjerg, B.B.; Schullehner, J.; Plana-Ripoll, O.; Brikell, I.; Wimberley, T.; Thygesen, M.; Madsen, K.B.; Timmerman, A.; et al. Incidence Rates and Cumulative Incidences of the Full Spectrum of Diagnosed Mental Disorders in Childhood and Adolescence. JAMA Psychiatry 2020, 77, 155–164. [Google Scholar] [CrossRef]
- Cortese, S.; Faraone, S.V.; Bernardi, S.; Wang, S.; Blanco, C. Gender differences in adult attention-deficit/hyperactivity disorder: Results from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). J. Clin. Psychiatry 2016, 77, e421–e428. [Google Scholar] [CrossRef]
- Boedhoe, P.S.W.; van Rooij, D.; Hoogman, M.; Twisk, J.W.; Schmaal, L.; Abe, Y.; Alonso, P.; Ameis, S.H.; Anikin, A.; Anticevic, A.; et al. Subcortical Brain Volume, Regional Cortical Thickness, and Cortical Surface Area Across Disorders: Findings From the ENIGMA ADHD, ASD, and OCD Working Groups. Am. J. Psychiatry 2020, 177, 834–843, Erratum in Am. J. Psychiatry 2020, 177, 843. https://doi.org/10.1176/appi.ajp.2020.1779correction. [Google Scholar] [CrossRef] [PubMed]
- Hoogman, M.; Bralten, J.; Hibar, D.P.; Mennes, M.; Zwiers, M.P.; Schweren, L.S.J.; van Hulzen, K.J.E.; Medland, S.E.; Shumskaya, E.; Jahanshad, N. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: A cross-sectional mega-analysis. Lancet Psychiatry 2017, 4, 310–319, Erratum in Lancet Psychiatry 2017, 4, 436. https://doi.org/10.1016/S2215-0366(17)30213-4. [Google Scholar] [CrossRef]
- Kumar, K.; Modenato, C.; Moreau, C.; Ching, C.R.K.; Harvey, A.; Martin-Brevet, S.; Huguet, G.; Jean-Louis, M.; Douard, E.; Martin, C.O.; et al. Subcortical Brain Alterations in Carriers of Genomic Copy Number Variants. Am. J. Psychiatry 2023, 180, 685–698. [Google Scholar] [CrossRef]
- Kessler, R.C.; Adler, L.A.; Berglund, P.; Green, J.G.; McLaughlin, K.A.; Fayyad, J.; Russo, L.J.; Sampson, N.A.; Shahly, V.; Zaslavsky, A.M. The effects of temporally secondary co-morbid mental disorders on the associations of DSM-IV ADHD with adverse outcomes in the US National Comorbidity Survey Replication Adolescent Supplement (NCS-A). Psychol. Med. 2014, 44, 1779–1792. [Google Scholar] [CrossRef] [PubMed]
- Drechsler, R.; Brem, S.; Brandeis, D.; Grünblatt, E.; Berger, G.; Walitza, S. ADHD: Current Concepts and Treatments in Children and Adolescents. Neuropediatrics 2020, 51, 315–335. [Google Scholar] [CrossRef]
- Franz, A.P.; Bolat, G.U.; Bolat, H.; Matijasevich, A.; Santos, I.S.; Silveira, R.C.; Procianoy, R.S.; Rohde, L.A.; Moreira-Maia, C.R. Attention-Deficit/Hyperactivity Disorder and Very Preterm/Very Low Birth Weight: A Meta-analysis. Pediatrics 2018, 141, e20171645. [Google Scholar] [CrossRef]
- Faraone, S.V.; Larsson, H. Genetics of attention deficit hyperactivity disorder. Mol. Psychiatry 2019, 24, 562–575. [Google Scholar] [CrossRef]
- Hawi, Z.; Cummins, T.D.; Tong, J.; Johnson, B.; Lau, R.; Samarrai, W.; A Bellgrove, M. The molecular genetic architecture of attention deficit hyperactivity disorder. Mol. Psychiatry 2015, 20, 289–297. [Google Scholar] [CrossRef]
- Cortese, S.; Coghill, D. Twenty years of research on attention-deficit/hyperactivity disorder (ADHD): Looking back, looking forward. Evid. Based Ment. Health 2018, 21, 173–176. [Google Scholar] [CrossRef]
- Thapar, A.; Stergiakouli, E. An Overview on the Genetics of ADHD. Xin Li Xue Bao 2008, 40, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Gu, W.; Hurles, M.E.; Lupski, J.R. Copy number variation in human health, disease, and evolution. Annu. Rev. Genomics Hum. Genet. 2009, 10, 451–481. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, O.O.; Walters, G.B.; Ingason, A.; Johansson, S.; Zayats, T.; Athanasiu, L.; Sonderby, I.E.; Gustafsson, O.; Nawaz, M.S.; Jonsson, G.F.; et al. Attention-deficit hyperactivity disorder shares copy number variant risk with schizophrenia and autism spectrum disorder. Transl. Psychiatry 2019, 9, 258. [Google Scholar] [CrossRef]
- Saia, F.; Prato, A.; Saccuzzo, L.; Madia, F.; Barone, R.; Fichera, M.; Rizzo, R. Copy Number Variations in Children with Tourette Syndrome: Systematic Investigation in a Clinical Setting. Genes 2023, 14, 500. [Google Scholar] [CrossRef]
- Barone, R.; Gulisano, M.; Amore, R.; Domini, C.; Milana, M.C.; Giglio, S.; Madia, F.; Mattina, T.; Casabona, A.; Fichera, M.; et al. Clinical correlates in children with autism spectrum disorder and CNVs: Systematic investigation in a clinical setting. Int. J. Dev. Neurosci. 2020, 80, 276–286. [Google Scholar] [CrossRef]
- Williams, N.M.; Zaharieva, I.; Martin, A.; Langley, K.; Mantripragada, K.; Fossdal, R.; Stefansson, H.; Stefansson, K.; Magnusson, P.; O Gudmundsson, O.; et al. Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: A genome-wide analysis. Lancet 2010, 376, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Conners, C.K. Conner’s Rating Scales—Revised Technical Manual; Multi-Health Systems Inc.: Toronto, ON, Canada, 1997. [Google Scholar]
- Guerrera, S.; Menghini, D.; Napoli, E.; Di Vara, S.; Valeri, G.; Vicari, S. Assessment of Psychopathological Comorbidities in Children and Adolescents With Autism Spectrum Disorder Using the Child Behavior Checklist. Front. Psychiatry 2019, 10, 535. [Google Scholar] [CrossRef] [PubMed]
- Biederman, J.; Monuteaux, M.C.; Kendrick, E.; Klein, K.L.; Faraone, S.V. The CBCL as a screen for psychiatric comorbidity in paediatric patients with ADHD. Arch. Dis. Child. 2005, 90, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, D. WISC-IV Administration and Scoring Manual; The Psychological Corporation: San Antonio, TX, USA, 2003. [Google Scholar]
- Roid, G.H.; Miller, L.J. Leiter International Performance Scale-Revised; Stoelting: Wood Dale, IL, USA, 1997. [Google Scholar]
- Sartori, G.; Job, R.; Tressoldi, P.E. DDE-2. Batteria per la Valutazione Della Dislessia e Della Disortografia Evolutiva (Battery for the Assessment of Developmental Dyslexia and Dysorthographia); Giunti: Firenze, Italy, 2007. [Google Scholar]
- Cornoldi, C.; Lucangeli, D.; Bellina, M. AC-MT 6–11. Test di Valutazione Delle Abilità di Calcolo e Soluzione Dei Problemi; AC-MT 6–11—Test for the Evaluation of Calculating and Problem Solving Abilities; Gruppo MT-Erickson: Trento, Italy, 2012. [Google Scholar]
- Cornoldi, C.; Colpo, G. Prove di Lettura MT (MT Reading Test); Organizzazioni Speciali: Firenze, Italy, 1981. [Google Scholar]
- Henderson, S.; Sugden, D.; Barnett, A. Movement Assessment Battery for Children (MABC-2), 2nd ed.; Pearson: London, UK, 2007. [Google Scholar]
- Kearney, H.M.; Thorland, E.C.; Brown, K.K.; Quintero-Rivera, F.; South, S.T.; Working Group of the American College of Medical Genetics Laboratory Quality Assurance Committee. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet. Med. 2011, 13, 680–685. [Google Scholar] [CrossRef]
- Harich, B.; van der Voet, M.; Klein, M.; Čížek, P.; Fenckova, M.; Schenck, A.; Franke, B. From Rare Copy Number Variants to Biological Processes in ADHD. Am. J. Psychiatry 2020, 177, 855–866. [Google Scholar] [CrossRef]
- Schachar, R. Genetics of Attention Deficit Hyperactivity Disorder (ADHD): Recent Updates and Future Prospects. Curr. Dev. Disord. Rep. 2014, 1, 41–49. [Google Scholar] [CrossRef]
- Ziats, M.N.; Goin-Kochel, R.P.; Berry, L.N.; Ali, M.; Ge, J.; Guffey, D.; Rosenfeld, J.A.; Bader, P.; Gambello, M.J.; Wolf, V.; et al. The complex behavioral phenotype of 15q13.3 microdeletion syndrome. Genet. Med. 2016, 18, 1111–1118. [Google Scholar] [CrossRef]
- Hoppman-Chaney, N.; Wain, K.; Seger, P.R.; Superneau, D.W.; Hodge, J.C. Identification of single gene deletions at 15q13.3: Further evidence that CHRNA7 causes the 15q13.3 microdeletion syndrome phenotype. Clin. Genet. 2013, 83, 345–351. [Google Scholar] [CrossRef]
- Girirajan, S.; Pizzo, L.; Moeschler, J.; Rosenfeld, J. Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; 16p12.2 Recurrent Deletion. In GeneReviews® [Internet]; University of Washington: Seattle, DC, USA, 2018. [Google Scholar] [PubMed]
- Tokita, M.J.; Chow, P.M.; Mirzaa, G.; Dikow, N.; Maas, B.; Isidor, B.; Le Caignec, C.; Penney, L.S.; Mazzotta, G.; Bernardini, L.; et al. Five children with deletions of 1p34.3 encompassing AGO1 and AGO3. Eur. J. Hum. Genet. 2015, 23, 761–765. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schalk, A.; Cousin, M.A.; Dsouza, N.R.; Challman, T.D.; E Wain, K.; Powis, Z.; Minks, K.; Trimouille, A.; Lasseaux, E.; Lacombe, D.; et al. De novo coding variants in the AGO1 gene cause a neurodevelopmental disorder with intellectual disability. J. Med. Genet. 2022, 59, 965–975. [Google Scholar] [CrossRef]
- Couto, J.M.; Gomez, L.; Wigg, K.; Cate-Carter, T.; Archibald, J.; Anderson, B.; Tannock, R.; Kerr, E.N.; Lovett, M.W.; Humphries, T.; et al. The KIAA0319-like (KIAA0319L) gene on chromosome 1p34 as a candidate for reading disabilities. J. Neurogenet. 2008, 22, 295–313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Galesi, O.; Di Blasi, F.D.; Grillo, L.; Elia, F.; Giambirtone, M.C.; Figura, M.G.; Rizzo, B.; Buono, S.; Romano, C. Dyslexia and Attention Deficit Hyperactivity Disorder Associated to a De Novo 1p34.3 Microdeletion. Genes 2022, 13, 1926. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ensenauer, R.E.; Adeyinka, A.; Flynn, H.C.; Michels, V.V.; Lindor, N.M.; Dawson, D.B.; Thorland, E.C.; Lorentz, C.P.; Goldstein, J.L.; McDonald, M.T.; et al. Microduplication 22q11.2, an emerging syndrome: Clinical, cytogenetic, and molecular analysis of thirteen patients. Am. J. Hum. Genet. 2003, 73, 1027–1040. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wentzel, C.; Fernström, M.; Ohrner, Y.; Annerén, G.; Thuresson, A.C. Clinical variability of the 22q11.2 duplication syndrome. Eur. J. Med. Genet. 2008, 51, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, V.; McRae, A.; Dineen, R.; Saulsberry, A.; Hoganson, G.; Schrift, M. Behavioral abnormalities are common and severe in patients with distal 22q11.2 microdeletions and microduplications. Mol. Genet. Genom. Med. 2015, 3, 346–353. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ito, T.; Yoshida, M.; Aida, T.; Kushima, I.; Hiramatsu, Y.; Ono, M.; Yoshimi, A.; Tanaka, K.; Ozaki, N.; Noda, Y. Astrotactin 2 (ASTN2) regulates emotional and cognitive functions by affecting neuronal morphogenesis and monoaminergic systems. J. Neurochem. 2023, 165, 211–229. [Google Scholar] [CrossRef] [PubMed]
- Rein, B.; Yan, Z. 16p11.2 Copy Number Variations and Neurodevelopmental Disorders. Trends Neurosci. 2020, 43, 886–901. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brunetti-Pierri, N.; Berg, J.S.; Scaglia, F.; Belmont, J.; Bacino, C.A.; Sahoo, T.; Lalani, S.R.; Graham, B.; Lee, B.; Shinawi, M.; et al. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat. Genet. 2008, 40, 1466–1471. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Busè, M.; Cuttaia, H.C.; Palazzo, D.; Mazara, M.V.; Lauricella, S.A.; Malacarne, M.; Pierluigi, M.; Cavani, S.; Piccione, M. Expanding the phenotype of reciprocal 1q21.1 deletions and duplications: A case series. Ital. J. Pediatr. 2017, 43, 61. [Google Scholar] [CrossRef] [PubMed]
- Upadhyai, P.; Amiri, E.F.; Guleria, V.S.; Bielas, S.L.; Girisha, K.M.; Shukla, A. Recurrent 1q21.1 deletion syndrome: Report on variable expression, nonpenetrance and review of literature. Clin. Dysmorphol. 2020, 29, 127–131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burnside, R.D. 22q11.21 Deletion Syndromes: A Review of Proximal, Central, and Distal Deletions and Their Associated Features. Cytogenet. Genome Res. 2015, 146, 89–99. [Google Scholar] [CrossRef] [PubMed]
- McGrath, L.M.; Yu, D.; Marshall, C.; Davis, L.K.; Thiruvahindrapuram, B.; Li, B.; Cappi, C.; Gerber, G.; Wolf, A.; Schroeder, F.A.; et al. Copy number variation in obsessive-compulsive disorder and tourette syndrome: A cross-disorder study. J. Am. Acad. Child. Adolesc. Psychiatry 2014, 53, 910–919. [Google Scholar] [CrossRef]
- Yin, C.L.; Chen, H.I.; Li, L.H.; Chien, Y.-L.; Liao, H.-M.; Chou, M.C.; Chou, W.-J.; Tsai, W.-C.; Chiu, Y.-N.; Wu, Y.-Y.; et al. Genome-wide analysis of copy number variations identifies PARK2 as a candidate gene for autism spectrum disorder. Mol. Autism. 2016, 7, 23. [Google Scholar] [CrossRef]
- Jarick, I.; Volckmar, A.L.; Pütter, C.; Pechlivanis, S.; Nguyen, T.T.; Dauvermann, M.R.; Beck, S.; Albayrak, Ö.; Scherag, S.; Gilsbach, S.; et al. Genome-wide analysis of rare copy number variations reveals PARK2 as a candidate gene for attention-deficit/hyperactivity disorder. Mol. Psychiatry 2014, 19, 115–121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sebat, J.; Lakshmi, B.; Malhotra, D.; Troge, J.; Lese-Martin, C.; Walsh, T.; Yamrom, B.; Yoon, S.; Krasnitz, A.; Kendall, J.; et al. Strong association of de novo copy number mutations with autism. Science 2007, 316, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Stefansson, H.; Rujescu, D.; Cichon, S.; Pietiläinen, O.P.H.; Ingason, A.; Steinberg, S.; Fossdal, R.; Sigurdsson, E.; Sigmundsson, T.; Buizer-Voskamp, J.E.; et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008, 455, 232–236. [Google Scholar] [CrossRef]
- Crespi, B.J.; Crofts, H.J. Association testing of copy number variants in schizophrenia and autism spectrum disorders. J. Neurodev. Disord. 2012, 4, 15. [Google Scholar] [CrossRef] [PubMed]
- Colombo, E.; Galli, R.; Cossu, G.; Gécz, J.; Broccoli, V. Mouse orthologue of ARX, a gene mutated in several X-linked forms of mental retardation and epilepsy, is a marker of adult neural stem cells and forebrain GABAergic neurons. Dev. Dyn. 2004, 231, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Poeta, L.; Malacarne, M.; Padula, A.; Drongitis, D.; Verrillo, L.; Lioi, M.B.; Chiariello, A.M.; Bianco, S.; Nicodemi, M.; Piccione, M.; et al. Further Delineation of Duplications of ARX Locus Detected in Male Patients with Varying Degrees of Intellectual Disability. Int. J. Mol. Sci. 2022, 23, 3084. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Popovici, C.; Busa, T.; Boute, O.; Thuresson, A.C.; Perret, O.; Sigaudy, S.; Södergren, T.; Andrieux, J.; Moncla, A.; Philip, N. Whole ARX gene duplication is compatible with normal intellectual development. Am. J. Med. Genet A 2014, 164A, 2324–2327. [Google Scholar] [CrossRef] [PubMed]
- Krgović, D. Role of Copy Number Variations in ADHD; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Orrico, A.; Galli, L.; Buoni, S.; Hayek, G.; Luchetti, A.; Lorenzini, S.; Zappella, M.; Pomponi, M.G.; Sorrentino, V. Attention-deficit/hyperactivity disorder (ADHD) and variable clinical expression of Aarskog-Scott syndrome due to a novel FGD1 gene mutation (R408Q). Am. J. Med. Genet. A. 2005, 135, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Parks, K.M.A.; Hannah, K.E.; Moreau, C.N.; Brainin, L.; Joanisse, M.F. Language abilities in children and adolescents with DLD and ADHD: A scoping review. J. Commun. Disord. 2023, 106, 106381. [Google Scholar] [CrossRef]
- Sollis, E.; Deriziotis, P.; Saitsu, H.; Miyake, N.; Matsumoto, N.; Hoffer, M.J.V.; Ruivenkamp, C.A.L.; Alders, M.; Okamoto, N.; Bijlsma, E.K.; et al. Equivalent missense variant in the FOXP2 and FOXP1 transcription factors causes distinct neurodevelopmental disorders. Hum. Mutat. 2017, 38, 1542–1554. [Google Scholar] [CrossRef]
- Demontis, D.; Walters, G.B.; Athanasiadis, G.; Walters, R.; Therrien, K.; Nielsen, T.T.; Farajzadeh, L.; Voloudakis, G.; Bendl, J.; Zeng, B.; et al. Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nat. Genet. 2023, 55, 198–208, Erratum in Nat. Genet. 2023, 55, 730. https://doi.org/10.1038/s41588-023-01350-w. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Wijngaarden, V.; de Wilde, H.; Mink van der Molen, D.; Petter, J.; Stegeman, I.; Gerrits, E.; Smit, A.L.; van den Boogaard, M.J. Genetic outcomes in children with developmental language disorder: A systematic review. Front. Pediatr. 2024, 17, 1315229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- DuPaul, G.J.; Gormley, M.J.; Laracy, S.D. Comorbidity of LD and ADHD: Implications of DSM-5 for assessment and treatment. J. Learn. Disabil. 2013, 46, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Hirschtritt, M.E.; Lee, P.C.; Pauls, D.L.; Dion, Y.; Grados, M.A.; Illmann, C.; King, R.A.; Sandor, P.; McMahon, W.M.; Lyon, G.J.; et al. Lifetime prevalence, age of risk, and genetic relationships of comorbid psychiatric disorders in Tourette syndrome. JAMA Psychiatry 2015, 72, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Banaschewski, T.; Neale, B.M.; Rothenberger, A.; Roessner, V. Comorbidity of tic disorders & ADHD. Eur. Child Adolesc. Psychiatry 2007, 16 (Suppl. S1), 5–14. [Google Scholar] [CrossRef]
- Rommelse, N.N.; Franke, B.; Geurts, H.M.; Hartman, C.A.; Buitelaar, J.K. Shared heritability of attention-deficit/hyperactivity disorder and autism spectrum disorder. Eur. Child. Adolesc. Psychiatry 2010, 19, 281–295. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blank, R.; Smits-Engelsman, B.; Polatajko, H.; Wilson, P. European Academy for Childhood Disability (EACD): Recommendations on the definition, diagnosis and intervention of developmental coordination disorder (long version). Dev. Med. Child. Neurol. 2012, 54, 54–93. [Google Scholar] [CrossRef]
- Andrade, C. Methylphenidate and the Risk of New-Onset Seizures. J. Clin. Psychiatry 2020, 81, 20f13586. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.S.; Difede, J.; Rothbaum, B.O.; Reger, G.; Spitalnick, J.; Cukor, J.; Mclay, R. Development and early evaluation of the Virtual Iraq/Afghanistan exposure therapy system for combat-related PTSD. Ann. N. Y. Acad. Sci. 2010, 1208, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.M.; Katusic, S.K.; Barbaresi, W.J.; Killian, J.; Weaver, A.L.; Ottman, R.; Wirrell, E.C. Epilepsy in children with attention-deficit/hyperactivity disorder. Pediatr. Neurol. 2010, 42, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Winkelmann, J.; Schormair, B.; Lichtner, P.; Ripke, S.; Xiong, L.; Jalilzadeh, S.; Fulda, S.; Pütz, B.; Eckstein, G.; Hauk, S.; et al. Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nat. Genet. 2007, 39, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Alemany, S.; Ribasés, M.; Vilor-Tejedor, N.; Bustamante, M.; Sánchez-Mora, C.; Bosch, R.; Richarte, V.; Cormand, B.; Casas, M.; Ramos-Quiroga, J.A.; et al. New suggestive genetic loci and biological pathways for attention function in adult attention-deficit/hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Fernàndez-Castillo, N.; Gan, G.; van Donkelaar, M.M.J.; Vaht, M.; Weber, H.; Retz, W.; Meyer-Lindenberg, A.; Franke, B.; Harro, J.; Reif, A.; et al. RBFOX1, encoding a splicing regulator, is a candidate gene for aggressive behavior. Eur. Neuropsychopharmacol. 2020, 30, 44–55. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Patients (n) | Age (Years) (Mean ± SD) | M–F Ratio | Deletions (n) | Duplications (n) | |
---|---|---|---|---|---|
A ll | 152 | 9 ± 2.5 | 128:24 | - | - |
Patients without CNVs (W-CNV) | 71 | 9.4 ± 2.4 | 63:8 | - | - |
Patients with CNVs | 81 | 8.7 ± 2.6 | 65:16 | 59 | 64 |
Patients with PC-CNVs | 13 | 10 ± 2.7 | 8:5 | 11 | 6 |
Patients with NC-CNVs | 68 | 8.4 ± 2.4 | 57:11 | 48 | 58 |
Proband | CNVs | Type of CNV | Genes Involved | Comorbidities | Dysmorphic Features | Brain MRI Abnormalities |
---|---|---|---|---|---|---|
1 | arr[GRCh37] 15q13.2q13.3 (31014508_32914140)×1 | Pathogenic | 12 coding genes, including MTMR10, OTUD7A, CHRNA7 | Intellectual disability | Plagiocephaly, high hairline, thick eyebrows, synophrys, long eyelashes, flattened nasal tip, short philtrum, and low-set ears | Arachnoid cyst at the right anterior frontal convexity |
2 | arr[GRCh37] 16p12.2(21596650_21837555)×1 | Pathogenic | 3 coding genes, including OTOA, METTL9 | Intellectual disability | Narrow forehead, facial asymmetry, hypertelorism, low-set ears | No brain MRI anomalies |
3 | arr[GRCh37] 16p12.2(21959891_22430592)×1 | Likely pathogenic | 8 coding genes, including UQCRC2, POLR3E, PDZD9 | Intellectual disability | Wide nasal bridge, abnormal ears | Asymmetry of the lateral ventricles, with increased volume of the left one |
4 | arr[GRCh37] 1p34.3 (35912039_36364474)×1 | Likely pathogenic | 8 coding genes, including AGO1, AGO4, KIAA0319L | Speech disorder, specific learning disabilities | Rounded face, anterior cowlick, small eyes | No brain MRI anomalies |
5 | arr[GRCh37] 22q11.21(18641409_21440514)×3 | Pathogenic | 48 coding genes involving PRODH, HIRA | Tourette syndrome, specific learning disabilities | Broad forehead, thick eyebrows, epicanthal fold, horizontal eyelid rhymes, low-implantation large ears, tragus hypoplasia, flat filter, protruding columella, ogival palate, thin upper lip, V-finger clinodactyly, finger pads | No brain MRI anomalies |
6 | arr[GRCh37] 9q33.1(119357327_119727205)×1 | Pathogenic | TRIM32, ASTN2 | Speech disorder | Triangular facies, high forehead, small chin, and hyperlaxity of the small joints | No brain MRI anomalies |
7 | arr[GRCh37] 16p11.2(29673954_30190568)×3 | Pathogenic | 27 coding genes involving PRRT2, YPEL3, TAOK2 | Speech disorder | No dysmorphism | Asymmetry of the lateral ventricles, with increased volume of the right one |
8 | arr[GRCh37] 1q21.1q21.2(146564743_147786706)x1 | Pathogenic | 9 coding genes involving GJA8, GKA5, CHD1L | Specific learning disabilities | Microcephaly, small forehead, arched eyebrows, hint of synophrys, horizontal palpebral fissures, thin upper lip, and microretrognathia | No brain MRI anomalies |
9 | arr[GRCh37] 22q11.21(20754422_21440514)×1 | Pathogenic | 14 coding genes involving LZTR1, PI4KA, CLKL | Specific learning disabilities | Abnormal ears and prominent forehead | No brain MRI anomalies |
10 | arr[GRCh37] 22q11.21(20754422_21440514)×1 | Pathogenic | 14 coding genes involving LZTR1, PI4KA, CLKL | Specific learning disabilities, Tourette syndrome | Abnormal ears and prominent forehead | No brain MRI anomalies |
11 | arr[GRCh37] 6q26(161878327_162683777)×1 | Pathogenic | PRKN | Specific learning disabilities, Tourette syndrome | No dysmporphism | No brain MRI anomalies |
12 | arr[GRCh37] 1q21.1(146324068_147786706)×3,16p13.12(13201755_13722409)×1 | Pathogenic | 10 coding genes involving CHD1L, GJA5, GJA8 | Tourette syndrome, obsessive–compulsive disorder | No dysmporphism | Moderate enlargement of the retrocerebellar cerebrospinal fluid space in the posterior median-paramedian left region. Slightly lower position of the cerebellar tonsils |
13 | arr[GRCh37] Xp22.11p21.3(24156222_25173416)×2,6q26(162799322_162960170)×3,11p15.4(4393574_4832231)×3 | Pathogenic | 7 coding genes involving ARX, ZFX, PDK3 | Specific learning disabilities, tic disorder | Microcephaly, small forehead, big and prominent ears | No brain MRI anomalies |
PC-CNVs (13) | NC-CNVs (68) | W-CNVs (71) | p-Value | |
---|---|---|---|---|
D ysmorphic Features | 9 (69.2%) | 28 (41.2%) | 35 (49.3%) | 0.162 a |
Oppositional Defiant Disorder | 1 (7.7%) | 14 (20.6%) | 20 (28.2%) | 0.222 a |
Developmental Language Disorder | 5 (38.5%) | 27 (39.7%) | 14 (19.7%) | 0.030 a |
Intellectual Disability | 3 (23.1%) | 15 (22.1%) | 13 (18.3%) | 0.834 a |
Autism Spectrum Disorder | 0 | 16 (23.5%) | 9 (12.7%) | 0.056 a |
Border Intellectual Functioning | 2 (15.4%) | 6 (8.8%) | 9 (12.7%) | 0.680 a |
Specific Learning Disabilities | 7(53.8%) | 15 (22.1%) | 18 (25.4%) | 0.056 a |
Tic Disorder | 5 (38.5%) | 19 (27.9%) | 17 (23.9%) | 0.54 a |
Epilepsy | 1 (7.7%) | 1 (1.5%) | 1 (1.4%) | >0.9999 b |
Developmental Coordination Disorder | 0 | 19 (27.9%) | 20 (28.2%) | 0.086 a |
IQ | 76.15 ± 24.18 | 82.32 ± 16.47 | 83.46 ± 15.68 | 0.340 c |
EEG Anomalies | 2 (15.4%) | 8 (11.8%) | 7 (9.8%) | 0.827 a |
Brain MRI Anomalies | 5 (38.5%) | 6 (8.8%) | 4 (5.6%) | 0.001 a |
PC-CNVs (13) | NC-CNVs (68) | W-CNVs (71) | p-Value | |
---|---|---|---|---|
C BCL Int. T-score | 65.54 ± 14.99 | 63.87 ± 8.44 | 66.65 ± 8.9 | 0.175 d |
CBCL Ext. T-score | 63.92 ± 10.03 | 66.4 ± 7.92 | 69.11 ± 7.3 | 0.131 d |
CBCL Tot. T-score | 63.77 ± 9.98 | 65.9 ± 6.88 | 67.39 ± 6.47 | 0.351 d |
CPRS-R Opp. T-score | 70.31 ± 13.78 | 68.5 ± 14.07 | 75.87 ± 15.05 | 0.011 d |
CPRS-R Inatt. T-score | 76.31 ± 15.09 | 74.4 ± 14.41 | 83.21 ± 11.07 | 0.001 d |
CPRS-R Hyperactive T-score | 74.38 ± 15.98 | 75.47 ± 15.15 | 79.79 ± 15.07 | 0.149 d |
CPRS-R ADHD index | 74.62 ± 10.45 | 75.31 ± 9.58 | 76.07 ± 13.49 | 0.581 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirabella, F.; Finocchiaro, V.; Figura, M.; Galesi, O.; Elia, M.; Buono, S.; Barone, R.; Rizzo, R. Exploring Copy Number Variants in a Cohort of Children Affected by ADHD: Clinical Investigation and Translational Insights. Genes 2025, 16, 1020. https://doi.org/10.3390/genes16091020
Mirabella F, Finocchiaro V, Figura M, Galesi O, Elia M, Buono S, Barone R, Rizzo R. Exploring Copy Number Variants in a Cohort of Children Affected by ADHD: Clinical Investigation and Translational Insights. Genes. 2025; 16(9):1020. https://doi.org/10.3390/genes16091020
Chicago/Turabian StyleMirabella, Federica, Valentina Finocchiaro, Mariagrazia Figura, Ornella Galesi, Maurizio Elia, Serafino Buono, Rita Barone, and Renata Rizzo. 2025. "Exploring Copy Number Variants in a Cohort of Children Affected by ADHD: Clinical Investigation and Translational Insights" Genes 16, no. 9: 1020. https://doi.org/10.3390/genes16091020
APA StyleMirabella, F., Finocchiaro, V., Figura, M., Galesi, O., Elia, M., Buono, S., Barone, R., & Rizzo, R. (2025). Exploring Copy Number Variants in a Cohort of Children Affected by ADHD: Clinical Investigation and Translational Insights. Genes, 16(9), 1020. https://doi.org/10.3390/genes16091020