Identification of Novel Gene Cluster Potentially Associated with Insecticide Resistance in Anopheles gambiae s.l.
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Analysis
2.2. Detection of Genome Regions Under Recent Positive Selection and Identification of New Candidate Genes
2.3. Genetic Variability
3. Results
3.1. Signals of Positive Selection–Identification of Potential New Insecticide Resistance Genes
3.2. SNPs in the Aldehyde Oxidase Genes
3.3. CNVs in the Aldehyde Oxidase Genes
3.4. Gene Flow, Population Structure, and Genetic Diversity at the Aldehyde Oxidases Locus
4. Discussion
4.1. Aldehyde Oxidases Under Positive Selection
4.2. Potential Role of Aldehyde Oxidases in Insecticide Resistance
4.3. Genetic Mechanisms: SNPs and CNVs
4.4. Gene Flow and Geographic Variation
4.5. Implications for Vector Control
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Venkatesan, P. The 2023 WHO World Malaria Report. Lancet Microbe. 2024, 5, e214. [Google Scholar] [CrossRef]
- Wondji, C.S.; Hearn, J.; Irving, H.; Wondji, M.J.; Weedall, G. RNAseq-Based Gene Expression Profiling of the Anopheles funestus Pyrethroid-Resistant Strain FUMOZ Highlights the Predominant Role of the Duplicated CYP6P9a/b Cytochrome P450s. G3 Genes|Genomes|Genet. 2021, 12, jkab352. [Google Scholar] [CrossRef] [PubMed]
- Hemingway, J.; Hawkes, N.J.; McCarroll, L.; Ranson, H. The Molecular Basis of Insecticide Resistance in Mosquitoes. Insect Biochem. Mol. Biol. 2004, 34, 653–665. [Google Scholar] [CrossRef]
- Ranson, H.; N’Guessan, R.; Lines, J.; Moiroux, N.; Nkuni, Z.; Corbel, V. Pyrethroid Resistance in African Anopheline Mosquitoes: What Are the Implications for Malaria Control? Trends Parasitol. 2011, 27, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Mouhamadou, C.S.; de Souza, S.S.; Fodjo, B.K.; Zoh, M.G.; Bli, N.K.; Koudou, B.G. Evidence of Insecticide Resistance Selection in Wild Anopheles coluzzii Mosquitoes Due to Agricultural Pesticide Use. Infect. Dis. Poverty 2019, 8, 64. [Google Scholar] [CrossRef] [PubMed]
- Kouamé, R.M.A.; Lynd, A.; Kouamé, J.K.I.; Vavassori, L.; Abo, K.; Donnelly, M.J.; Edi, C.; Lucas, E. Widespread Occurrence of Copy Number Variants and Fixation of Pyrethroid Target Site Resistance in Anopheles gambiae (s.l.) from Southern Côte d’Ivoire. Curr. Res. Parasitol. Vector Borne Dis. 2023, 3, 100117. [Google Scholar] [CrossRef]
- Suh, P.F.; Elanga-Ndille, E.; Tchouakui, M.; Sandeu, M.M.; Tagne, D.; Wondji, C.; Ndo, C. Impact of Insecticide Resistance on Malaria Vector Competence: A Literature Review. Malar. J. 2023, 22, 19. [Google Scholar] [CrossRef]
- Ibrahim, S.S.; Muhammad, A.; Hearn, J.; Weedall, G.D.; Nagi, S.C.; Mukhtar, M.M.; Fadel, A.N.; Mugenzi, L.J.; Patterson, E.I.; Irving, H.; et al. Molecular Drivers of Insecticide Resistance in the Sahelo-Sudanian Populations of a Major Malaria Vector Anopheles coluzzii. BMC Biol. 2023, 21, 125. [Google Scholar] [CrossRef]
- Li, X.; Schuler, M.A.; Berenbaum, M.R. Molecular Mechanisms of Metabolic Resistance to Synthetic and Natural Xenobiotics. Annu. Rev. Entomol. 2007, 52, 231–253. [Google Scholar] [CrossRef]
- Lynd, A.; Weetman, D.; Barbosa, S.; Egyir Yawson, A.; Mitchell, S.; Pinto, J.; Hastings, I.; Donnelly, M.J. Field, Genetic, and Modeling Approaches Show Strong Positive Selection Acting upon an Insecticide Resistance Mutation in Anopheles gambiae s.s. Mol. Biol. Evol. 2010, 27, 1117–1125. [Google Scholar] [CrossRef]
- Toé, K.H.; N’Falé, S.; Dabiré, R.K.; Ranson, H.; Jones, C.M. The Recent Escalation in Strength of Pyrethroid Resistance in Anopheles coluzzi in West Africa Is Linked to Increased Expression of Multiple Gene Families. BMC Genom. 2015, 16, 146. [Google Scholar] [CrossRef] [PubMed]
- Lucas, E.R.; Nagi, S.C.; Egyir-Yawson, A.; Essandoh, J.; Dadzie, S.; Chabi, J.; Djogbénou, L.S.; Medjigbodo, A.A.; Edi, C.V.; Kétoh, G.K.; et al. Genome-Wide Association Studies Reveal Novel Loci Associated with Pyrethroid and Organophosphate Resistance in Anopheles gambiae and Anopheles coluzzii. Nat. Commun. 2023, 14, 4946. [Google Scholar] [CrossRef] [PubMed]
- Hancock, P.A.; Ochomo, E.; Messenger, L.A. Genetic Surveillance of Insecticide Resistance in African Anopheles Populations to Inform Malaria Vector Control. Trends Parasitol. 2024, 40, 604–618. [Google Scholar] [CrossRef]
- Donnelly, M.J.; Isaacs, A.T.; Weetman, D. Identification, Validation and Application of Molecular Diagnostics for Insecticide Resistance in Malaria Vectors. Trends Parasitol. 2016, 32, 197–206. [Google Scholar] [CrossRef]
- Xue, A.T.; Schrider, D.R.; Kern, A.D.; Consortium, A. Discovery of Ongoing Selective Sweeps within Anopheles Mosquito Populations Using Deep Learning. Mol. Biol. Evol. 2021, 38, 1168–1183. [Google Scholar] [CrossRef]
- Garud, N.R.; Messer, P.W.; Buzbas, E.O.; Petrov, D.A. Recent Selective Sweeps in North American Drosophila melanogaster Show Signatures of Soft Sweeps. PLoS Genet. 2015, 11, e1005004. [Google Scholar] [CrossRef]
- The Anopheles gambiae 1000 Genomes Consortium. Genome Variation and Population Structure in Three African Malaria Vector Species within the Anopheles gambiae Complex; Manubot: 2021. Published online. Available online: https://malariagen.github.io/ag1000g-phase3-data-paper/ (accessed on 20 March 2025).
- Ag3.0 (Ag1000G Phase 3)—MalariaGEN Vector Data User Guide. Available online: https://malariagen.github.io/vector-data/ag3/ag3.0.html (accessed on 20 March 2025).
- Merga, H.; Degefa, T.; Birhanu, Z.; Tadele, A.; Lee, M.-C.; Yan, G.; Yewhalaw, D. Urban Malaria in Sub-Saharan Africa: A Scoping Review of Epidemiologic Studies. Malar. J. 2025, 24, 131. [Google Scholar] [CrossRef]
- Nsanzabana, C. Strengthening Surveillance Systems for Malaria Elimination by Integrating Molecular and Genomic Data. Trop. Med. Infect. Dis. 2019, 4, 139. [Google Scholar] [CrossRef]
- Clarkson, C.S.; Temple, H.J.; Miles, A. The Genomics of Insecticide Resistance: Insights from Recent Studies in African Malaria Vectors. Curr. Opin. Insect Sci. 2018, 27, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Kientega, M.; Clarkson, C.S.; Traoré, N.; Hui, T.-Y.J.; O’Loughlin, S.; Millogo, A.-A.; Epopa, P.S.; Yao, F.A.; Belem, A.M.G.; Brenas, J.; et al. Whole-Genome Sequencing of Major Malaria Vectors Reveals the Evolution of New Insecticide Resistance Variants in a Longitudinal Study in Burkina Faso. Malar. J. 2024, 23, 280. [Google Scholar] [CrossRef]
- Nagi, S.C.; Lucas, E.R.; Egyir-Yawson, A.; Essandoh, J.; Dadzie, S.; Chabi, J.; Djogbénou, L.S.; Medjigbodo, A.A.; Edi, C.V.; Ketoh, G.K.; et al. Parallel Evolution in Mosquito Vectors—A Duplicated Esterase Locus Is Associated with Resistance to Pirimiphos-Methyl in An. gambiae. bioRxiv 2024. [Google Scholar] [CrossRef]
- Garattini, E.; Fratelli, M.; Terao, M. The Mammalian Aldehyde Oxidase Gene Family. Hum. Genom. 2009, 4, 119–130. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Shen, G.; Mao, X.; Jiao, M.; Lin, Y. Identification and Characterization of Aldehyde Oxidase 5 in the Pheromone Gland of the Silkworm (Lepidoptera: Bombycidae). J. Insect Sci. 2020, 20, 31. [Google Scholar] [CrossRef]
- Godoy, R.; Mutis, A.; Carabajal Paladino, L.; Venthur, H. Genome-Wide Identification of Aldehyde Oxidase Genes in Moths and Butterflies Suggests New Insights Into Their Function as Odorant-Degrading Enzymes. Front. Ecol. Evol. 2022, 10, 823119. [Google Scholar] [CrossRef]
- Sanoh, S.; Tayama, Y.; Sugihara, K.; Kitamura, S.; Ohta, S. Significance of Aldehyde Oxidase during Drug Development: Effects on Drug Metabolism, Pharmacokinetics, Toxicity, and Efficacy. Drug Metab. Pharmacokinet. 2015, 30, 52–63. [Google Scholar] [CrossRef]
- Hemingway, J. The Molecular Basis of Two Contrasting Metabolic Mechanisms of Insecticide Resistance. Insect Biochem. Mol. Biol. 2000, 30, 1009–1015. [Google Scholar] [CrossRef]
- Coleman, M.; Vontas, J.G.; Hemingway, J. Molecular Characterization of the Amplified Aldehyde Oxidase from Insecticide Resistant Culex quinquefasciatus. Eur. J. Biochem. 2002, 269, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Sexton, J.P.; Clemens, M.; Bell, N.; Hall, J.; Fyfe, V.; Hoffmann, A.A. Patterns and Effects of Gene Flow on Adaptation across Spatial Scales: Implications for Management. J. Evol. Biol. 2024, 37, 732–745. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, C.S.; Miles, A.; Harding, N.J.; O’Reilly, A.O.; Weetman, D.; Kwiatkowski, D.; Donnelly, M.J. The Genetic Architecture of Target-site Resistance to Pyrethroid Insecticides in the African Malaria Vectors Anopheles gambiae and Anopheles coluzzii. Mol. Ecol. 2021, 30, 5303–5317. [Google Scholar] [CrossRef]
- Stica, C.; Jeffries, C.L.; Irish, S.R.; Barry, Y.; Camara, D.; Yansane, I.; Kristan, M.; Walker, T.; Messenger, L.A. Characterizing the Molecular and Metabolic Mechanisms of Insecticide Resistance in Anopheles gambiae in Faranah, Guinea. Malar. J. 2019, 18, 244. [Google Scholar] [CrossRef]
- Jones, C.M.; Liyanapathirana, M.; Agossa, F.R.; Weetman, D.; Ranson, H.; Donnelly, M.J.; Wilding, C.S. Footprints of Positive Selection Associated with a Mutation (N1575Y) in the Voltage-Gated Sodium Channel of Anopheles gambiae. Proc. Natl. Acad. Sci. USA 2012, 109, 6614–6619. [Google Scholar] [CrossRef] [PubMed]
- Fouet, C.; Ashu, F.A.; Ambadiang, M.M.; Tchapga, W.; Wondji, C.S.; Kamdem, C. Clothianidin-Resistant Anopheles gambiae Adult Mosquitoes from Yaoundé, Cameroon, Display Reduced Susceptibility to SumiShield® 50WG, a Neonicotinoid Formulation for Indoor Residual Spraying. BMC Infect. Dis. 2024, 24, 133. [Google Scholar] [CrossRef] [PubMed]
- Dick, R.A.; Kanne, D.B.; Casida, J.E. Substrate Specificity of Rabbit Aldehyde Oxidase for Nitroguanidine and Nitromethylene Neonicotinoid Insecticides. Chem. Res. Toxicol. 2006, 19, 38–43. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ki, H.D.; Kientega, M.; Yemien, S.O.G.; Maiga, H.; Traoré, N.; Bayili, K.; Namountougou, M.; Diabaté, A. Identification of Novel Gene Cluster Potentially Associated with Insecticide Resistance in Anopheles gambiae s.l. Genes 2025, 16, 1018. https://doi.org/10.3390/genes16091018
Ki HD, Kientega M, Yemien SOG, Maiga H, Traoré N, Bayili K, Namountougou M, Diabaté A. Identification of Novel Gene Cluster Potentially Associated with Insecticide Resistance in Anopheles gambiae s.l. Genes. 2025; 16(9):1018. https://doi.org/10.3390/genes16091018
Chicago/Turabian StyleKi, Hyacinthe Dipina, Mahamadi Kientega, Sabéré O. G. Yemien, Hamidou Maiga, Nouhoun Traoré, Koama Bayili, Moussa Namountougou, and Abdoulaye Diabaté. 2025. "Identification of Novel Gene Cluster Potentially Associated with Insecticide Resistance in Anopheles gambiae s.l." Genes 16, no. 9: 1018. https://doi.org/10.3390/genes16091018
APA StyleKi, H. D., Kientega, M., Yemien, S. O. G., Maiga, H., Traoré, N., Bayili, K., Namountougou, M., & Diabaté, A. (2025). Identification of Novel Gene Cluster Potentially Associated with Insecticide Resistance in Anopheles gambiae s.l. Genes, 16(9), 1018. https://doi.org/10.3390/genes16091018