Chloroplast Genome Evolution and Codon Usage In the Medicinal Plant Pothos chinensis (Araceae)
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Sequencing
2.2. Chloroplast Genome Assembly and Annotation
2.3. Structure and Sequence Divergence Analyses
2.4. Evolutionary Hotspots and Phylogenetic Analysis
2.5. Calculation of Parameters Related to Codon Usage Bias
2.6. Identification of Optimal Codons
2.7. Neutrality Plot Analysis
2.8. ENC-Plot Analysis
2.9. PR2-Bias Plot Analysis
3. Results
3.1. Chloroplast Genome Characters of P. chinensis
3.2. Structural Variations, Sequence Divergence, and Nucleotide Diversity
3.3. Phylogenetic Analysis
3.4. Codon Usage Bias and the Optimal Codons
3.5. Neutrality Plot Analysis
3.6. ENC-Plot Analysis
3.7. Parity-Rule 2 (PR2) Bias Plot Analysis
4. Discussion
4.1. Chloroplast Genome Evolution Within P. chinensis
4.2. Natural Selection and the Codon Preference of P. chinensis Chloroplast Genome
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Croat, T.B. Araceae, a family with great potential. Ann. Mo. Bot. Gard. 2019, 104, 3–9. [Google Scholar] [CrossRef]
- Cabrera, L.I.; Salazar, G.A.; Chase, M.W.; Mayo, S.J.; Bogner, J.; Dávila, P. Phylogenetic relationships of aroids and duckweeds (Araceae) inferred from coding and noncoding plastid DNA. Am. J. Bot. 2008, 95, 1153–1165. [Google Scholar] [CrossRef]
- Cusimano, N.; Bogner, J.; Mayo, S.J.; Boyce, P.C.; Wong, S.Y.; Hesse, M.; Hetterscheid, W.L.A.; Keating, R.C.; French, J.C. Relationships within the Araceae: Comparison of morphological patterns with molecular phylogenies. Am. J. Bot. 2011, 98, 654–668. [Google Scholar] [CrossRef] [PubMed]
- Nauheimer, L.; Metzler, D.; Renner, S.S. Global history of the ancient monocot family Araceae inferred with models accounting for past continental positions and previous ranges based on fossils. New Phytol. 2011, 195, 938–950. [Google Scholar] [CrossRef]
- Chartier, M.; Gibernau, M.; Renner, S.S. The evolution of pollinator-plant interaction types in the Araceae. Evolution 2014, 68, 1533–1543. [Google Scholar] [CrossRef]
- Li, H.; Boyce, P.C. Pothos. In Flora of China; Wu, Z.-Y., Raven, P.H., Hong, D.-Y., Eds.; Science Press: Beijing, China, 2010; Volume 23, pp. 6–8. [Google Scholar]
- Bi, X.-L.; Chen, X.; Jiang, J.-Y.; Liu, M.-Y.; Xu, A.-L.; Luo, W.-H.; Lin, X.-Y. Chemical constituents from Pothos chinensis. J. Chin. Med. Mater. 2017, 40, 1112–1115. [Google Scholar]
- Xiao, G.-L.; Yang, M.-J.; Zeng, Z.-H.; Tang, R.-Y.; Jiang, J.-Y.; Wu, G.-Y.; Xie, C.-H.; Jia, D.-Z.; Bi, X.-L. Investigation into the anti-inflammatory mechanism of Pothos chinensis (Raf.) Merr. By regulating TLR4/MyD88/NF-κB pathway: Integrated network pharmacology, serum pharmacochemistry, and metabolomics. J. Ethnopharmacol. 2024, 334, 118520. [Google Scholar] [CrossRef]
- Sajeesh, T.; Arunachalam, K.; Parimelazhagan, T. Antioxidant and antipyretic studies on Pothos scandens L. Asian Pac. J. Trop. Med. 2011, 4, 889–899. [Google Scholar]
- Henriquez, C.L.; Arias, T.; Pires, J.C.; Croat, T.B.; Schaal, B.A. Phylogenomics of the plant family Araceae. Mol. Phylogenet. Evol. 2014, 75, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Abdullah; Henriquez, C.L.; Mehmood, F.; Carlsen, M.M.; Islam, M.; Waheed, M.T.; Poczai, P.; Croat, T.B.; Ahmed, I. Complete chloroplast genomes of Anthurium huixtlense and Pothos scandens (Pothoideae, Araceae): Unique inverted repeat expansion and contraction affect rate of evolution. J. Mol. Evol. 2020, 88, 562–574. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.-P.; Xu, C.; Cheng, T.; Lin, K.; Zhou, S.-L. Sequencing angiosperm plastid genomes made easy: A complete set of universal primers and a case study on the phylogeny of Saxifragales. Genome Biol. Evol. 2013, 5, 989–997. [Google Scholar] [CrossRef]
- Xue, S.; Shi, T.; Luo, W.; Ni, X.-D.; Iqbal, S.; Ni, Z.; Huang, X.; Yao, D.; Shen, Z.-J.; Gao, Z.-H. Comparative analysis of the complete chloroplast genome among Prunus mume, P. armeniaca, and P. salicina. Hortic. Res. 2019, 6, 89. [Google Scholar] [CrossRef]
- Liu, D.-K.; Tu, X.-D.; Zhao, Z.; Zeng, M.-Y.; Zhang, S.; Ma, L.; Zhang, G.-Q.; Wang, M.-M.; Liu, Z.-J.; Lan, S.-R.; et al. Plastid phylogenomic data yield new and robust insights into the phylogeny of Cleisostoma-Gastrochilus clades (Orchidaceae, Aeridinae). Mol. Phylogenet. Evol. 2020, 145, 106729. [Google Scholar] [CrossRef]
- Zhou, P.; Lei, W.-S.; Shi, Y.-K.; Liu, Y.-Z.; Luo, Y.; Li, J.-H.; Xiang, X.-G. Plastome evolution, phylogenomics, and DNA barcoding investigation of Gastrochilus (Aeridinae, Orchidaceae), with a focus on the systematic position of Haraella retrocalla. Int. J. Mol. Sci. 2024, 25, 8500. [Google Scholar] [CrossRef]
- Fages-Lartaud, M.; Hundvin, K.; Hohmann-Marriott, M.F. Mechanisms governing codon usage bias and the implications for protein expression in the chloroplast of Chlamydomonas reinhardtii. Plant J. 2022, 112, 919–945. [Google Scholar] [CrossRef] [PubMed]
- Iriarte, A.; Lamolle, G.; Musto, H. Codon usage bias: An endless tale. J. Mol. Evol. 2021, 89, 589–593. [Google Scholar] [CrossRef]
- Xu, C.; Cai, X.-N.; Chen, Q.-Z.; Zhou, H.-X.; Cai, Y.; Ben, A.-L. Factors affecting synonymous codon usage bias in chloroplast genome of Oncidium Gower Ramsey. Evol. Bioinform. 2011, 7, 271–278. [Google Scholar] [CrossRef]
- Li, N.; Li, Y.-Y.; Zheng, C.-C.; Huang, J.-G.; Zhang, S.-Z. Genome-wide comparative analysis of the codon usage patterns in plants. Genes. Genom. 2016, 38, 723–731. [Google Scholar] [CrossRef]
- Romero, H.; Zavala, A.; Musto, H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucl. Acid. Res. 2000, 28, 2084–2090. [Google Scholar] [CrossRef] [PubMed]
- Duret, L. tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet. 2000, 16, 287–289. [Google Scholar] [CrossRef]
- Li, X.-J.; Liu, L.-E.; Ren, Q.-D.; Zhang, T.; Hu, N.; Sun, J.; Zhou, W. Analysis of synonymous codon usage bias in the chloroplast genome of five Caragana. BMC Plant Biol. 2025, 25, 322. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Jin, J.-J.; Yu, W.-B.; Yang, J.-B.; Song, Y.; dePamphilis, C.W.; Yi, T.-S.; Li, D.-Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq-versatile and accurate annotation of organelle genomes. Nucl. Acid. Res. 2017, 45, 6–11. [Google Scholar] [CrossRef]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018, 34, 3030–3031. [Google Scholar] [CrossRef]
- Darling, A.E.; Mau, B.; Perna, N.T. ProgressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 2010, 5, e11147. [Google Scholar] [CrossRef]
- Katoh, K.; Toh, H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 2010, 26, 1899–1900. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Yang, Y.-Y.; Qu, X.-J.; Ma, H.; Hu, Y.; Li, H.-T.; Yi, T.-S.; Li, D.-Z. Phylotranscriptomic analyses reveal multiple whole-genome duplication events, the history of diversification and adaptations in the Araceae. Ann. Bot. 2023, 131, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Swofford, D.L. PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4.0b10; Sinauer: Sunderland, MA, USA, 2003. [Google Scholar]
- Lee, S.; Weon, S.; Lee, S.; Kang, C. Relative codon adaptation index, a sensitive measure of codon usage bias. Evol. Bioinform. 2010, 6, 47–55. [Google Scholar] [CrossRef]
- Wright, F. The ‘effective number of codons’ used in a gene. Gene 1990, 87, 23–29. [Google Scholar] [CrossRef]
- Bu, Y.-F.; Wu, X.-Y.; Sun, N.; Man, Y.; Jing, Y.-P. Codon usage bias predicts the functional MYB10 gene in Populus. J. Plant Physiol. 2021, 265, 153491. [Google Scholar] [CrossRef]
- Vicario, S.; Moriyama, E.N.; Powell, J.R. Codon usage in twelve species of Drosophila. BMC Evol. Biol. 2007, 7, 226. [Google Scholar] [CrossRef]
- Tao, P.; Dai, L.; Luo, M.-C.; Tang, F.-Q.; Tien, P.; Pan, Z.-S. Analysis of synonymous codon usage in classical swine fever virus. Virus Genes 2009, 38, 104–112. [Google Scholar] [CrossRef]
- Sueoka, N. Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J. Mol. Evol. 1995, 40, 318–325. [Google Scholar] [CrossRef]
- Sueoka, N. Translation-coupled violation of Parity Rule 2 in human genes is not the cause of heterogeneity of the DNA G+C content of third codon position. Gene 1999, 238, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Sueoka, N. Near homogeneity of PR2-bias fingerprints in the human genome and their implications in phylogenetic analyses. J. Mol. Evol. 2001, 53, 469–476. [Google Scholar] [CrossRef]
- Small, R.L.; Ryburn, J.A.; Cronn, R.C.; Seelanan, T.; Wendel, J.F. The tortoise and the hare: Choosing between noncoding plastome and nuclear Adh sequences for phylogenetic reconstruction in a recently diverged plant group. Am. J. Bot. 1998, 85, 1301–1315. [Google Scholar] [CrossRef]
- Shaw, J.; Lickey, E.; Beck, J.T.; Farmer, S.B.; Liu, W.-S.; Miller, J.; Siripun, K.C.; Winder, C.T.; Schilling, E.E.; Small, R.L. The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am. J. Bot. 2005, 92, 142–166. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.; Lickey, E.B.; Schilling, E.E.; Small, R.L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. Am. J. Bot. 2007, 94, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, C.; Govindarajan, S.; Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004, 22, 346–353. [Google Scholar] [CrossRef]
- Ingvarsson, P.K. Gene expression and protein length influence codon usage and rates of sequence evolution in Populus tremula. Mol. Biol. Evol. 2007, 24, 836–844. [Google Scholar] [CrossRef]
- Elena, C.; Ravasi, P.; Castelli, M.E.; Peirú, S.; Menzella, H.G. Expression of codon optimized genes in microbial systems: Current industrial applications and perspectives. Front. Microbiol. 2014, 5, 21. [Google Scholar] [CrossRef]
- Gerrit, B.; Diarmaid, H. The selective advantage of synonymous codon usage bias in Salmonella. PLoS Genet. 2016, 12, e1005926. [Google Scholar]
- Zhang, Y.; Nie, X.; Jia, X.; Zhao, C.; Biradar, S.S.; Wang, L.; Du, X.; Weining, S. Analysis of codon usage patterns of the chloroplast genomes in the Poaceae family. Aust. J. Bot. 2012, 60, 461–470. [Google Scholar] [CrossRef]
- Dai, G.-N.; Shang, M.-Y.; Wang, J.-L.; Zheng, J.-M.; Liao, B.-B.; Liu, Y.-L.; Duan, B.-Z. Codon bias and phylogenesis analysis of chloroplast genome in medicinal plants of Lilium. Chin. Tradit. Herbal. Drugs. 2024, 55, 3835–3844. [Google Scholar]
- Nie, X.; Deng, P.; Feng, K.; Liu, P.; Du, X.; You, F.M.; Weining, S. Comparative analysis of codon usage patterns in chloroplast genomes of the Asteraceae family. Plant. Mol. Biol. Rep. 2014, 32, 828–840. [Google Scholar] [CrossRef]
- Zhang, R.-Z.; Zhang, L.; Wang, W.; Zhang, Z.; Du, H.-H.; Qu, Z.; Li, X.-Q.; Xiang, H. Differences in codon usage bias between photosynthesis-related genes and genetic system-related genes of chloroplast genomes in cultivated and wild Solanum species. Int. J. Mol. Sci. 2018, 19, 3142. [Google Scholar] [CrossRef] [PubMed]
Variation | GC1 | GC2 | GC3 | GC_all | ENC |
---|---|---|---|---|---|
GC2 | 0.361 * | ||||
GC3 | 0.247 | 0.125 | |||
GC_all | 0.813 ** | 0.727 ** | 0.558 ** | ||
ENC | 0.303 * | −0.200 | 0.387 ** | 0.210 | |
Codon No. | −0.153 | −0.310 * | 0.216 | −0.157 | 0.256 |
Amino Acid | Codon | High Expression Gene | Low Expression Gene | ∆RSCU | ||
---|---|---|---|---|---|---|
RSCU | No. | RSCU | No. | |||
Ala | GCU *** | 2.45 | 38 | 1.65 | 42 | 0.80 |
Arg | AGA * | 2.16 | 31 | 1.97 | 65 | 0.19 |
Gln | CAA * | 1.46 | 19 | 1.34 | 90 | 0.12 |
Ile | AUU * | 1.48 | 34 | 1.30 | 110 | 0.18 |
Leu | UUA * | 1.46 | 17 | 1.19 | 64 | 0.27 |
UUG * | 1.63 | 19 | 1.53 | 82 | 0.10 | |
Lys | AAA ** | 1.65 | 28 | 1.22 | 118 | 0.43 |
Pro | CCU *** | 2.11 | 19 | 1.44 | 57 | 0.67 |
Ser | AGU *** | 1.77 | 18 | 1.00 | 52 | 0.77 |
UCC * | 1.28 | 13 | 1.18 | 61 | 0.10 | |
UCG * | 1.77 | 18 | 1.56 | 81 | 0.21 | |
Thr | ACU *** | 1.95 | 21 | 1.44 | 50 | 0.51 |
Val | GUA *** | 1.62 | 15 | 1.04 | 40 | 0.58 |
GUU ** | 1.95 | 18 | 1.48 | 57 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Zhang, J. Chloroplast Genome Evolution and Codon Usage In the Medicinal Plant Pothos chinensis (Araceae). Genes 2025, 16, 1017. https://doi.org/10.3390/genes16091017
Chen H, Zhang J. Chloroplast Genome Evolution and Codon Usage In the Medicinal Plant Pothos chinensis (Araceae). Genes. 2025; 16(9):1017. https://doi.org/10.3390/genes16091017
Chicago/Turabian StyleChen, Hua, and Jisi Zhang. 2025. "Chloroplast Genome Evolution and Codon Usage In the Medicinal Plant Pothos chinensis (Araceae)" Genes 16, no. 9: 1017. https://doi.org/10.3390/genes16091017
APA StyleChen, H., & Zhang, J. (2025). Chloroplast Genome Evolution and Codon Usage In the Medicinal Plant Pothos chinensis (Araceae). Genes, 16(9), 1017. https://doi.org/10.3390/genes16091017