A Novel Pathogenic Variant of the AVPR2 Gene Leading to Arginine Vasopressin Resistance Since the Neonatal Period
Abstract
1. Introduction
2. Case Presentation
2.1. Patient Presentation and Clinical Assessment
2.2. Genetic Diagnosis
2.2.1. Methods
2.2.2. Genetic Analysis
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Angelousi, A.; Alexandraki, K.I.; Mytareli, C.; Grossman, A.B.; Kaltsas, G. New developments and concepts in the diagnosis and management of diabetes insipidus (AVP-deficiency and resistance). J. Neuroendocrinol. 2023, 35, e13233. [Google Scholar] [CrossRef]
- Christ-Crain, M.; Bichet, D.G.; Fenske, W.K.; Goldman, M.B.; Rittig, S.; Verbalis, J.G.; Verkman, A.S. Diabetes insipidus. Nat. Rev. Dis. Primers 2019, 5, 54. [Google Scholar] [CrossRef] [PubMed]
- Arthus, M.F.; Lonergan, M.; Crumley, M.J.; Naumova, A.K.; Morin, D.; LA, D.E.M.; Kaplan, B.S.; Robertson, G.L.; Sasaki, S.; Morgan, K.; et al. Report of 33 novel AVPR2 mutations and analysis of 117 families with X-linked nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 2000, 11, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Hureaux, M.; Vargas-Poussou, R. Genetic basis of nephrogenic diabetes insipidus. Mol. Cell. Endocrinol. 2023, 560, 111825. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Garcia, S.C.; Downie, M.L.; Kim, J.S.; Boyer, O.; Walsh, S.B.; Nijenhuis, T.; Papizh, S.; Yadav, P.; Reynolds, B.C.; Decramer, S.; et al. Treatment and long-term outcome in primary nephrogenic diabetes insipidus. Nephrol. Dial. Transplant. 2020, 38, 2120–2130. [Google Scholar] [CrossRef]
- Arima, H.; Cheetham, T.; Christ-Crain, M.; Cooper, D.; Drummond, J.; Gurnell, M.; Levy, M.; McCormack, A.; Newell-Price, J.; Verbalis, J.G.; et al. Changing the Name of Diabetes Insipidus: A Position Statement of the Working Group for Renaming Diabetes Insipidus. J. Clin. Endocrinol. Metab. 2022, 108, 1–3. [Google Scholar] [CrossRef]
- Levtchenko, E.; Ariceta, G.; Arguedas Flores, O.; Bichet, D.G.; Bockenhauer, D.; Emma, F.; Hoorn, E.J.; Koster-Kamphuis, L.; Nijenhuis, T.; Trepiccione, F.; et al. International expert consensus statement on the diagnosis and management of congenital nephrogenic diabetes insipidus (arginine vasopressin resistance). Nat. Rev. Nephrol. 2025, 21, 83–96. [Google Scholar] [CrossRef]
- D’Alessandri-Silva, C.; Carpenter, M.; Ayoob, R.; Barcia, J.; Chishti, A.; Constantinescu, A.; Dell, K.M.; Goodwin, J.; Hashmat, S.; Iragorri, S.; et al. Diagnosis, Treatment, and Outcomes in Children With Congenital Nephrogenic Diabetes Insipidus: A Pediatric Nephrology Research Consortium Study. Front. Pediatr. 2019, 7, 550. [Google Scholar] [CrossRef]
- Duicu, C.; Pitea, A.M.; Săsăran, O.M.; Cozea, I.; Man, L.; Bănescu, C. Nephrogenic diabetes insipidus in children (Review). Exp. Ther. Med. 2021, 22, 746. [Google Scholar] [CrossRef]
- Makita, N.; Manaka, K.; Sato, J.; Iiri, T. V2 vasopressin receptor mutations. Vitam. Horm. 2020, 113, 79–99. [Google Scholar] [CrossRef]
- Newell-Price, J.; Drummond, J.B.; Gurnell, M.; Levy, M.; McCormack, A.; Cooper, D.; Wass, J.; Christ-Crain, M.; Verbalis, J.G. Approach to the Patient With Suspected Hypotonic Polyuria. J. Clin. Endocrinol. Metab. 2025, 110, e506–e514. [Google Scholar] [CrossRef]
- Lopes, A.; Campos, A.C.; Marques Simões, J.; Jordão, A. Lithium-Induced Arginine Vasopressin Resistance (AVP-R): A Case of Chronic Exposure to Lithium. Cureus 2023, 15, e41677. [Google Scholar] [CrossRef]
- Williams, A.A.; Pir Muhammad, A.I.; Ruchi, R.; Ali, R. Managing Ifosfamide-Induced Arginine Vasopressin Resistance: Diagnostic and Treatment Strategies. Cureus 2025, 17, e81236. [Google Scholar] [CrossRef] [PubMed]
- Wadehra, A.; Ghandour, M. Foscarnet-Associated Nephrogenic Diabetes Insipidus. Am. J. Ther. 2022, 29, e750–e751. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, A.; Bhattacharya, S.; Lathia, T.; Kantroo, V.; Kalra, S.; Dutta, D. Anticancer Medications and Sodium Dysmetabolism. Eur. Endocrinol. 2020, 16, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Downie, M.L.; Lopez Garcia, S.C.; Kleta, R.; Bockenhauer, D. Inherited Tubulopathies of the Kidney: Insights from Genetics. Clin. J. Am. Soc. Nephrol. 2021, 16, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Szymanik-Grzelak, H.; Daniel, M.U.; Skrzypczyk, P.; Kotuła, I.; Pańczyk-Tomaszewska, M. Is copeptin a reliable biomarker of primary monosymptomatic nocturnal enuresis? Cent. Eur. J. Immunol. 2019, 44, 38–44. [Google Scholar] [CrossRef]
- Tenderenda-Banasiuk, E.; Wasilewska, A.; Filonowicz, R.; Jakubowska, U.; Waszkiewicz-Stojda, M. Serum copeptin levels in adolescents with primary hypertension. Pediatr. Nephrol. 2014, 29, 423–429. [Google Scholar] [CrossRef]
- Skrzypczyk, P.; Okarska-Napierała, M.; Górska, E.; Stelmaszczyk-Emmel, A.; Pańczyk-Tomaszewska, M. Copeptin in children with chronic kidney disease. Pol. Merkur. Lek. 2018, 44, 165–170. [Google Scholar] [PubMed]
- Morgenthaler, N.G.; Struck, J.; Alonso, C.; Bergmann, A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin. Chem. 2006, 52, 112–119. [Google Scholar] [CrossRef]
- Moritz, M.L.; Ayus, J.C. Maintenance Intravenous Fluids in Acutely Ill Patients. N. Engl. J. Med. 2015, 373, 1350–1360. [Google Scholar] [CrossRef]
- Sharma, S.; Ashton, E.; Iancu, D.; Arthus, M.F.; Hayes, W.; Van’t Hoff, W.; Kleta, R.; Bichet, D.G.; Bockenhauer, D. Long-term outcome in inherited nephrogenic diabetes insipidus. Clin. Kidney J. 2019, 12, 180–187. [Google Scholar] [CrossRef]
- Islam, S.; Moinuddin Mir, A.R.; Arfat, M.Y.; Alam, K.; Ali, A. Studies on glycoxidatively modified human IgG: Implications in immuno-pathology of type 2 diabetes mellitus. Int. J. Biol. Macromol. 2017, 104, 19–29. [Google Scholar] [CrossRef]
Age [day] | Circumstance | Sodium [mmol/L] | Potassium [mmol/L] | Serum Osmolality [275–294 mOsm/kgH2O] | Urine Osmolality [275–900 mOsm/kgH2O] | Urine Gravity [g/mL] |
---|---|---|---|---|---|---|
12 | In the department of neonatology | 158 | 4.7 | 315 | 66 | 1003 |
21 | After i.v. rehydration | 147 | 5.4 | 298.1 | 60 | 1003 |
28 | After 7 days at home | 154 | 5.0 | 310 | 43 | 1002 |
29 | Admission to the hospital | 157 | 5.3 | 323 | 73 | 1001 |
31 | After i.v. rehydration | 145 | 5.1 | 298 | 60 | 1002 |
34 | Copeptine sampling (271 pmol/L) * | 147 | 5.4 | 310 | 73 | 1001 |
35 | After DDAVP sublingualy (3.125 µg) + 3 h without feeding | 154 | 5.4 | 320 | 66 | 1002 |
36 | After DDAVP sublingualy (9.375 µg) | 151 | 5.1 | 310 | 43 | 1001 |
37 | After DDAVP sublingualy 15 µg | 154 | 5.1 | 310 | 66 | 1001 |
Central Etiology | Renal Etiology | Other |
---|---|---|
Arginine vasopressin deficiency (formerly, central diabetes insipidus) | Arginine vasopressin resistance (formerly, nephrogenic diabetes insipidus) | Congenital adrenal hyperplasia with salt wasting |
Cerebral salt wasting syndrome | Chronic kidney disease of different etiologies (especially congenital anomalies of the kidney and urinary tract, nephronophthisis, ciliopathies) | Diabetes mellitus |
Bartter syndrome (especially types 1, 2, and 5) | Hypercalcemia (e.g., vitamin D intoxication, idiopathic infantile hypercalcemia) | |
Congenital or acquired Fanconi syndrome | Hypokalemia (e.g., familial hyperaldosteronism) | |
Distal renal tubular acidosis | ||
Apparent mineralocorticoid excess |
Congenital | Acquired |
---|---|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szmigielska, A.; Skrzypczyk, P.; Czapczak, D.; Dux, M.; Lipka, A.; Pyrżak, B.; Kucharska, A.M. A Novel Pathogenic Variant of the AVPR2 Gene Leading to Arginine Vasopressin Resistance Since the Neonatal Period. Genes 2025, 16, 989. https://doi.org/10.3390/genes16080989
Szmigielska A, Skrzypczyk P, Czapczak D, Dux M, Lipka A, Pyrżak B, Kucharska AM. A Novel Pathogenic Variant of the AVPR2 Gene Leading to Arginine Vasopressin Resistance Since the Neonatal Period. Genes. 2025; 16(8):989. https://doi.org/10.3390/genes16080989
Chicago/Turabian StyleSzmigielska, Agnieszka, Piotr Skrzypczyk, Dorota Czapczak, Marta Dux, Adam Lipka, Beata Pyrżak, and Anna Małgorzata Kucharska. 2025. "A Novel Pathogenic Variant of the AVPR2 Gene Leading to Arginine Vasopressin Resistance Since the Neonatal Period" Genes 16, no. 8: 989. https://doi.org/10.3390/genes16080989
APA StyleSzmigielska, A., Skrzypczyk, P., Czapczak, D., Dux, M., Lipka, A., Pyrżak, B., & Kucharska, A. M. (2025). A Novel Pathogenic Variant of the AVPR2 Gene Leading to Arginine Vasopressin Resistance Since the Neonatal Period. Genes, 16(8), 989. https://doi.org/10.3390/genes16080989