Can Cis-Regulatory Elements Explain Differences in Petunia Pollination Syndromes?
Abstract
1. Introduction
2. Materials and Methods
2.1. Genes
2.2. Gene and Protein Sequences
2.3. Promoter and Gene Structure Analyses
2.4. Gene Ontology
3. Results
3.1. Gene and Protein Sequences
3.2. Gene Ontology
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
bp | base pairs |
BPBT | benzoyl-CoA: benzyl alcohol/phenyl ethanol benzoyl transferase gene |
CDS | coding DNA sequence |
DFR | di-hidroflavonol-4-reductase gene |
EOBII | emission of benzoids II gene |
FVBP | floral volatile benzenoid/phenylpropanoid |
GO | Gene Ontology analysis and terms |
kb | kilo bases |
MYB-FL | R2R3 MYB transcription factor |
NEC1 | nectar 1 gene |
ODO1 | odorant 1 gene |
TF-binding | transcription factor binding sites |
TF(s) | transcription factor(s) |
UV | ultraviolet |
References
- Wittkopp, P.J.; Kalay, G. Cis-Regulatory elements: Molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. 2012, 13, 59–69. [Google Scholar] [CrossRef]
- Marand, A.P.; Eveland, A.L.; Kaufmann, K.; Springer, N.M. Cis-Regulatory elements in plant development, adaptation, and evolution. Ann. Rev. Plant Biol. 2023, 74, 111–137. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.Y.; Chen, X.; Gao, G.; Zhang, H.; Zhu, Q.-H.; Liu, X.-C.; Zhong, Y.-F.; Gu, X.; He, K.; Luo, J. PlantTFDB: A comprehensive plant transcription factor database. Nucl. Acids Res. 2008, 36, D966–D969. [Google Scholar] [CrossRef] [PubMed]
- Fenster, C.B.; Armbruster, W.S.; Wilson, P.; Dudash, M.R.; Thomson, J.D. Pollination syndromes and floral specialization. Ann. Rev. Ecol. Evol. Syst. 2004, 35, 375–403. [Google Scholar] [CrossRef]
- Muchhala, N. Adaptive trade-off in floral morphology mediates specialization for flowers pollinated by bats and hummingbirds. Am. Nat. 2007, 169, 494–504. [Google Scholar] [CrossRef]
- Schiestl, F.P.; Johnson, S.D. Pollinator-mediated evolution of floral signals. Trends Ecol. Evol. 2013, 28, 307–315. [Google Scholar] [CrossRef]
- Dellinger, A.S. Pollination syndromes in the 21st century: Where do we stand and where may we go? New Phytol. 2020, 228, 1193–1213. [Google Scholar] [CrossRef]
- van der Niet, T.; Johnson, S.D. Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends Ecol. Evol. 2012, 27, 353–361. [Google Scholar] [CrossRef]
- Soares, L.S.; Stehmann, J.R.; Freitas, L.B. The genus Petunia (Solanaceae): Evolutionary synthesis and taxonomic review. Plants 2025, 14, 1478. [Google Scholar] [CrossRef]
- Bombarely, A.; Moser, M.; Amrad, A.; Bao, M.; Bapaume, L.; Barry, C.S.; Bliek, M.; Boersma, M.R.; Borghi, L.; Bruggmann, R.; et al. Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nat. Plants 2016, 2, 16074. [Google Scholar] [CrossRef]
- Vandenbussche, M.; Chambrier, P.; Bento, S.R.; Morel, P. Petunia, your next supermodel? Front. Plant Sci. 2016, 7, 72. [Google Scholar] [CrossRef] [PubMed]
- Reck-Kortmann, M.; Silva-Arias, G.A.; Segatto, A.L.A.; Mäder, G.; Bonatto, S.L.; Freitas, L.B. Multilocus phylogeny reconstruction: New insights into the evolutionary history of the genus Petunia. Mol. Phylogen. Evol. 2014, 81, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Stehmann, J.R.; Lorenz-Lemke, A.P.; Freitas, L.B.; Semir, J. The genus Petunia. In Petunia: Evolutionary, Developmental and Physiological Genetics; Gerats, T., Strommer, J., Eds.; Springer: New York, NY, USA, 2009; pp. 1–28. [Google Scholar]
- Wijsman, H.J.W. On the interrelationships of certain species of Petunia. II. Experimental data: Crosses between different taxa. Acta Bot. Neerl. 1983, 32, 97–107. [Google Scholar] [CrossRef]
- Backes, A.; Turchetto, C.; Mäder, G.; Segatto, A.L.A.; Bonatto, S.L.; Freitas, L.B. Shades of white: The Petunia long corolla tube clade evolutionary history. Genet. Mol. Biol. 2024, 47, e20230279. [Google Scholar] [CrossRef]
- Hoballah, M.E.; Gübitz, T.; Stuurman, J.; Broger, L.; Barone, M.; Mandel, T.; Dell’OLivo, A.; Arnold, M.; Kuhlemeier, C. Single gene–mediated shift in pollinator attraction in Petunia. Plant Cell 2007, 19, 779–790. [Google Scholar] [CrossRef]
- Amrad, A.; Moser, M.; Mandel, T.; de Vries, M.; Schuurink, R.C.; Freitas, L.; Kuhlemeier, C. Gain and loss of floral scent production through changes in structural genes during pollinator-mediated speciation. Curr. Biol. 2016, 26, 3303–3312. [Google Scholar] [CrossRef]
- Stuurman, J.; Hoballah, M.E.; Briger, L.; Moore, J.; Basten, C.; Kuhlemeier, C. Dissection of floral pollination syndromes in Petunia. Genetics 2004, 168, 1585–1599. [Google Scholar] [CrossRef]
- Lorenz-Lemke, A.P.; Mäder, G.; Muschner, V.C.; Stehmann, J.R.; Bonatto, S.L.; Salzano, F.M.; Freitas, L.B. Diversity and natural hybridization in a highly endemic species of Petunia (Solanaceae): A molecular and ecological analysis. Mol. Ecol. 2006, 15, 4487–4497. [Google Scholar] [CrossRef]
- Rodrigues, D.M.; Caballero-Villalobos, L.M.; Turchetto, C.; Assis-Jacques, R.; Kuhlemeier, C.; Freitas, L.B. Do we truly understand pollination syndromes in Petunia as much as we suppose? AoB Plants 2018, 10, ply057. [Google Scholar] [CrossRef]
- Berardi, A.E.; Esfeld, K.; Jäggi, L.; Mandel, T.; Cannarozzi, G.M.; Kuhlemeier, C. Complex evolution of novel red floral color in Petunia. Plant Cell 2021, 33, 2273–2295. [Google Scholar] [CrossRef]
- Venail, J.; Dell’Olivo, A.; Kuhlemeier, C. Speciation genes in the genus Petunia. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 461–468. [Google Scholar] [CrossRef]
- Klahre, U.; Gurba, A.; Hermann, K.; Saxenhofer, M.; Bossolini, E.; Guerin, P.M.; Kuhlemeier, C. Pollinator choice in Petunia depends on two major genetic loci for floral scent production. Curr. Biol. 2011, 21, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Dell’Olivo, A.; Kuhlemeier, C. Asymmetric effects of loss and gain of a floral trait on pollinator preference. Evolution 2013, 67, 3023–3031. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, H.; Moser, M.; Klahre, U.; Esfeld, K.; Dell’OLivo, A.; Mandel, T.; Metzger, S.; Vandenbussche, M.; Freitas, L.; Kuhlemeier, C. MYB-FL controls gain and loss of floral UV absorbance, a key trait affecting pollinator preference and reproductive isolation. Nat. Genet. 2016, 48, 159–166. [Google Scholar] [CrossRef]
- Esfeld, K.; Berardi, A.E.; Moser, M.; Bossolini, E.; Freitas, L.B.; Kuhlemeier, C. Pseudogenization and resurrection of a speciation gene. Curr. Biol. 2018, 28, 3776–3786. [Google Scholar] [CrossRef]
- Binaghi, M.; Esfeld, K.; Mandel, T.; Freitas, L.B.; Roesti, M.; Kuhlemeier, C. Genetic architecture of a pollinator shift and its fate in secondary hybrid zones of two Petunia species. BMC Biol. 2023, 21, 58. [Google Scholar] [CrossRef]
- Winkel-Shirley, B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001, 126, 485–493. [Google Scholar] [CrossRef]
- Quattrocchio, F.; Wing, J.; van der Woude, K.; Souer, E.; de Vetten, N.; Mol, J.; Koes, R. Molecular analysis of the anthocyanin2 gene of Petunia and its role in the evolution of flower color. Plant Cell 1999, 11, 1433–1444. [Google Scholar] [CrossRef]
- Johnson, E.T.; Ryu, S.; Yi, H.; Shin, B.; Cheong, H.; Choi, G. Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant J. 2001, 25, 325–333. [Google Scholar] [CrossRef]
- Verdonk, J.C.; Haring, M.A.; van Tunen, A.J.; Schuurink, R.C. ODORANT1 regulates fragrance biosynthesis in Petunia flowers. Plant Cell 2005, 17, 1612–1624. [Google Scholar] [CrossRef]
- Boersma, M.R.; Patrick, R.M.; Jillings, S.L.; Shaipulah, N.F.M.; Sun, P.; Haring, M.A.; Dudareva, N.; Li, Y.; Schuurink, R.C. ODORANT1 targets multiple metabolic networks in Petunia flowers. Plant J. 2022, 109, 1134–1151. [Google Scholar] [CrossRef]
- Spitzer-Rimon, B.; Farhi, M.; Albo, B.; Cna’aNi, A.; Ben Zvi, M.M.; Masci, T.; Edelbaum, O.; Yu, Y.; Shklarman, E.; Ovadis, M.; et al. The R2R3-MYB–like regulatory factor EOBI, acting downstream of EOBII, regulates scent production by activating ODO1 and structural scent-related genes in Petunia. Plant Cell 2013, 24, 5089–5105. [Google Scholar] [CrossRef] [PubMed]
- Fenske, M.P.; Hewett-Hazelton, K.D.; Hempton, A.K.; Shim, J.S.; Yamamoto, B.M.; Riffell, J.A.; Imaizumi, T. Circadian clock gene LATE ELONGATED HYPOCOTYL directly regulates the timing of floral scent emission in Petunia. Proc. Nat. Acad. Sci. USA 2015, 112, 9775–9780. [Google Scholar] [CrossRef] [PubMed]
- Chopy, M.; Binaghi, M.; Cannarozzi, G.; Halitschke, R.; Boachon, B.; Heutink, R.; Bomzan, D.P.; Jäggi, L.; van Geest, G.; Verdonk, J.C.; et al. A single MYB transcription factor with multiple functions during flower development. New Phytol. 2023, 239, 2007–2025. [Google Scholar] [CrossRef] [PubMed]
- Stehmann, J.R.; Semir, J. New species of Calibrachoa and Petunia (Solanaceae) from subtropical South America. Syst. Bot. Monograph. 2005, 104, 341–348. [Google Scholar]
- Lin, I.W.; Sosso, D.; Chen, L.Q.; Gase, K.; Kim, S.-G.; Kessler, D.; Klinkenberg, P.M.; Gorder, M.K.; Hou, B.-H.; Qu, X.-Q.; et al. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 2014, 508, 546–549. [Google Scholar] [CrossRef]
- Ge, Y.X.; Angenent, G.C.; Wittich, P.E.; Peters, J.; Franken, J.; Busscher, M.; Zhang, L.-M.; Dahlhaus, E.; Kater, M.M.; Wullems, G.J.; et al. NEC1, a novel gene, highly expressed in nectary tissue of Petunia hybrida. Plant J. 2000, 24, 725–734. [Google Scholar] [CrossRef]
- Iftikhar, J.; Lyu, M.; Liu, Z.; Mehmood, N.; Munir, N.; Ahmed, M.A.A.; Batool, W.; Aslam, M.M.; Yuan, Y.; Wu, B. Sugar and hormone dynamics and the expression profiles of SUT/SUC and SWEET sugar transporters during flower development in Petunia axillaris. Plants 2020, 9, 1770. [Google Scholar] [CrossRef]
- Pereira, A.G.; Guzmán-Rodriguez, S.; Freitas, L.B. Phylogenetic analyses of some key genes provide information on pollinator attraction in Solanaceae. Genes 2022, 13, 2278. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2010, 38, 3022–3027. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- van Moerkercke, A.; Haring, M.A.; Schuurink, R.C. The transcription factor EMISSION OF BENZENOIDS II activates the MYB ODORANT1 promoter at a MYB binding site specific for fragrant petunias. Plant J. 2011, 67, 917–928. [Google Scholar] [CrossRef]
- Thomas, P.D.; Ebert, D.; Muruganujan, A.; Mushayahama, T.; Albou, L.P.; Mi, H. PANTHER: Making genome-scale phylogenetics accessible to all. Protein Sci. 2022, 31, 8–22. [Google Scholar] [CrossRef]
- Beltrame, L.C.; Thompson, C.E.; Freitas, L.B. Molecular evolution and structural analyses of proteins involved in metabolic pathways of volatile organic compounds in Petunia hybrida (Solanaceae). Genet. Mol. Biol. 2023, 46, e20220114. [Google Scholar] [CrossRef] [PubMed]
- Pezzi, P.H.; Gonçalves, L.T.; Deprá, M.; Freitas, L.B. Evolution and diversification of the O-methyltransferase (OMT) gene family in Solanaceae. Genet. Mol. Biol. 2023, 46, e20230121. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.E.; Correa, L.B.; Thompson, H.N.; Stassen, H.; Freitas, L.B. Evolutionary and structural aspects of Solanaceae RNases T2. Genet. Mol. Biol. 2023, 46, e20220115. [Google Scholar] [CrossRef] [PubMed]
- Fregonezi, J.N.; Turchetto, C.; Bonatto, S.L.; Freitas, L.B. Biogeographical history and diversification of Petunia and Calibrachoa (Solanaceae) in the Neotropical Pampas grassland: Species diversification in the Pampas. Bot. J. Lin. Soc. 2013, 171, 140–153. [Google Scholar] [CrossRef]
- Caballero-Villalobos, L.M.; Silva-Arias, G.A.; Turchetto, C.; Giudicelli, G.C.; Petzold, E.; Bombarely, A.; Freitas, L.B. Neutral and adaptive genomic variation in hybrid zones of two ecologically diverged Petunia species (Solanaceae). Bot. J. Lin. Soc. 2021, 196, 100–122. [Google Scholar] [CrossRef]
- Giudicelli, G.C.; Turchetto, C.; Guzmán-Rodriguez, S.; Teixeira, M.C.; Petzold, E.; Bombarely, A.; Freitas, L.B. Population genomics indicates micro-refuges and riverine barriers for a southern South American grassland nightshade. J. Biogeog. 2022, 49, 51–65. [Google Scholar] [CrossRef]
- Ni, J.; Zhao, Y.; Tao, R.; Yin, L.; Gao, L.; Strid, Å.; Qian, M.; Li, J.; Li, Y.; Shen, J.; et al. Ethylene mediates the branching of the jasmonate-induced flavonoid biosynthesis pathway by suppressing anthocyanin biosynthesis in red Chinese pear fruits. Plant Biotechnol. J. 2020, 18, 1223–1240. [Google Scholar] [CrossRef]
- Gould, K.S.; Lister, C. Flavonoids functions in plants. In Flavonoids: Chemistry, Biochemistry and Applications; Anderson, O.M., Markham, K.R., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 412–463. [Google Scholar]
- Hults, H.S.M.; Gerats, A.G.M.; Kreike, M.M.; Mol, J.N.M.; Koes, R.E. Genetic control of di-hydroflavonol 4-reductase gene expression in Petunia hybrida. Plant J. 1994, 6, 295–310. [Google Scholar] [CrossRef]
- Rankin, D.T.; Clark, C.; Wilson-Rankin, E.E. Hummingbirds use taste and touch to discriminate against nectar resources that contain Argentine ants. Behav. Ecol. Sociobiol. 2018, 72, 44. [Google Scholar] [CrossRef]
- Pezzi, P.H.; Guzmán-Rodriguez, S.; Giudicelli, G.C.; Turchetto, C.; Bombarely, A.; Freitas, L.B. A convoluted tale of hybridization between two Petunia species from a transitional zone in South America. Perspect. Plant Ecol. Evol. Syst. 2022, 56, 125688. [Google Scholar] [CrossRef]
- Pacini, E.; Nepi, M. Nectar production and presentation. In Nectaries and Nectar; Nicolson, S.W., Nepi, M., Pacini, E., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 167–214. [Google Scholar]
- Heil, M. Nectar: Generation, regulation and ecological functions. Trends Plant Sci. 2011, 16, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Vandelook, F.; Janssens, S.B.; Gijbels, P.; Fischer, E.; Van den Ende, W.; Honnay, O.; Abrahamczyk, S. Nectar traits differ between pollination syndromes in Balsaminaceae. Ann. Bot. 2019, 124, 269–279. [Google Scholar] [CrossRef]
- Morel, P.; Heijmans, K.; Ament, K.; Chopy, M.; Trehin, C.; Chambrier, P.; Bento, S.R.; Bimbo, A.; Vandenbussche, M. The floral C-lineage genes trigger nectary development in Petunia and Arabidopsis. Plant Cell 2018, 30, 2020–2037. [Google Scholar] [CrossRef]
- Brandenburg, A.; Kuhlemeier, C.; Bshary, R. Hawkmoth pollinators decrease seed set of a low-nectar Petunia axillaris line through reduced probing time. Curr. Biol. 2012, 22, 1635–1639. [Google Scholar] [CrossRef]
- Liu, G.; Ren, G.; Guirgis, A.; Thornburg, R.W. The MYB305 transcription factor regulates expression of nectarin genes in the ornamental tobacco floral nectary. Plant Cell. 2009, 9, 2672–2687. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, A.G.; Filgueiras, J.P.C.; Freitas, L.B. Can Cis-Regulatory Elements Explain Differences in Petunia Pollination Syndromes? Genes 2025, 16, 963. https://doi.org/10.3390/genes16080963
Pereira AG, Filgueiras JPC, Freitas LB. Can Cis-Regulatory Elements Explain Differences in Petunia Pollination Syndromes? Genes. 2025; 16(8):963. https://doi.org/10.3390/genes16080963
Chicago/Turabian StylePereira, Aléxia G., João Pedro C. Filgueiras, and Loreta B. Freitas. 2025. "Can Cis-Regulatory Elements Explain Differences in Petunia Pollination Syndromes?" Genes 16, no. 8: 963. https://doi.org/10.3390/genes16080963
APA StylePereira, A. G., Filgueiras, J. P. C., & Freitas, L. B. (2025). Can Cis-Regulatory Elements Explain Differences in Petunia Pollination Syndromes? Genes, 16(8), 963. https://doi.org/10.3390/genes16080963