Genomics in Lung Cancer: A Scoping Review of the Role of ctDNA in Non-Advanced Non-Small-Cell Lung Cancer in the Prediction of Prognosis After Multimodality Therapeutic Approaches
Abstract
1. Introduction
2. Material and Methods
Literature Research Outcome
3. Results
3.1. Baseline ctDNA and Long-Term Prognosis After Minimally Invasive Surgery
First Author | Year | Country | Study Design | Approach Used for MRD | Result of ctDNA Detection | ctDNA Prognostic Impact | |
---|---|---|---|---|---|---|---|
Pre-Treatment | Post-Treatment | ||||||
Li [28] | 2022 | China | Prospective | Tissue informed | Post-operative serial ctDNA detection identified recurrence almost nine months earlier than conventional radiologic imaging | Yes | ---- |
Jung [29] | 2023 | Korea | Retrospective | Tissue agnostic | ctDNA independent risk factor for FS ith stage (p < 0.001) and micropapillary subtype (p = 0.02). MRD detected before radiological recurrence in 69% of patients with exon 19 deletion and in 20% with L858R mutation. | Yes | ---- |
Markou [30] | 2023 | Greece | Prospective | N/A | Univariate analysis showed that patients with detectable plasma-cfDNA mutations had a significantly increased risk of disease progression. This risk was even greater when mutations were present in either plasma-cfDNA or CTC-derived DNA. (HR: 2.716; 95% CI, 1.030–7.165; p = 0.043) | Yes | ---- |
Peng [34] | 2020 | China | Prospective | Tissue informed | ctDNA-positive patients after surgery showed significantly lower RFS (HR = 3.076, p = 0.0015) and OS (HR = 3.195, p = 0.0053). Disease recurrence was observed in 63.3% (19/30) of ctDNA-positive patients, with 89.5% (17/19) of these patients showing detectable ctDNA within two weeks of surgery, on average 12.6 months before radiographic signs of recurrence. | ---- | Yes |
Xia [35] | 2022 | China | Prospective | Tissue informed | The presence of ctDNA at either three days or one month after surgery was a powerful indicator of disease recurrence, showing a hazard ratio (HR) of 11.1 (p < 0.001). | ---- | Yes |
Waldeck [36] | 2022 | Germany | Prospective | N/A | Detection of ctDNA in early postoperative plasma was linked to reduced progression-free survival (p = 0.013) and overall survival (p = 0.004). | ---- | Yes |
Tran [37] | 2024 | USA | Prospective | N/A | Worse outcome for patients without ctDNA clearance after surgery. | ---- | Yes |
Tan [38] | 2024 | Singapore | Retrospective | Tissue informed | ctDNA was identified in seven patients, all of whom later showed radiological evidence of recurrence. Notably, ctDNA positivity appeared before imaging confirmation, with a median lead time of 2.8 months (ranging from 0 to 12.9 months). | ---- | ---- |
Walls [39] | 2020 | UK | Prospective | Tissue informed | ctDNA levels decreased during RT | ---- | ---- |
Pan [40] | 2023 | China | Prospective | Tissue informed | ctDNA levels dropped significantly during chemoradiotherapy (CRT) at both the mid-treatment (on-RT) and post-treatment (after-RT) stages compared to baseline. A group of 38 patients (27.3%) who had undetectable ctDNA at both these time points—reflecting an early treatment response—demonstrated improved survival outcomes. | Yes | Yes |
3.2. Baseline ctDNA and Long-Term Prognosis After Radiotherapy
3.3. Post-Treatment ctDNA and Prediction of Recurrence and Prognosis
3.4. Future Directions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marinello, A.; Tagliamento, M.; Pagliaro, A.; Conci, N.; Cella, E.; Vasseur, D.; Remon, J.; Levy, A.; Dall’Olio, F.G.; Besse, B. Circulating tumor DNA to guide diagnosis and treatment of localized and locally advanced non-small cell lung cancer. Cancer Treat. Rev. 2024, 129, 102791. [Google Scholar] [CrossRef]
- Alix-Panabières, C.; Pantel, K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov. 2021, 11, 858–873. [Google Scholar] [CrossRef]
- Abbosh, C.; Birkbak, N.J.; Wilson, G.A.; Jamal-Hanjani, M.; Constantin, T.; Salari, R.; Le Quesne, J.; Moore, D.A.; Veeriah, S.; Rosenthal, R.; et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 2017, 545, 446–451. [Google Scholar] [CrossRef]
- Diaz, L.A.; Bardelli, A. Liquid biopsies: Genotyping circulating tumor DNA. J. Clin. Oncol. 2014, 32, 579–586. [Google Scholar] [CrossRef]
- Yasui, K.; Toshima, T.; Inada, R.; Umeda, Y.; Yano, S.; Tanioka, H.; Nyuya, A.; Fujiwara, T.; Yamada, T.; Naomoto, Y.; et al. Circulating cell-free DNA methylation patterns as non-invasive biomarkers to monitor colorectal cancer treatment efficacy without referencing primary site mutation profiles. Mol. Cancer 2024, 23, 1. [Google Scholar] [CrossRef]
- Manoochehri, M.; Borhani, N.; Gerhäuser, C.; Assenov, Y.; Schönung, M.; Hielscher, T.; Christensen, B.C.; Lee, M.K.; Gröne, H.J.; Lipka, D.B.; et al. DNA methylation biomarkers for noninvasive detection of triple-negative breast cancer using liquid biopsy. Int. J. Cancer 2023, 152, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- de Vos, L.; Jung, M.; Koerber, R.M.; Bawden, E.G.; Holderried, T.A.W.; Dietrich, J.; Bootz, F.; Brossart, P.; Kristiansen, G.; Dietrich, D. Treatment Response Monitoring in Patients with Advanced Malignancies Using Cell-Free SHOX2 and SEPT9 DNA Methylation in Blood: An Observational Prospective Study. J. Mol. Diagn. 2020, 22, 920–933. [Google Scholar] [CrossRef]
- Symonds, E.L.; Pedersen, S.K.; Yeo, B.; Al Naji, H.; Byrne, S.E.; Roy, A.; Young, G.P. Assessment of tumor burden and response to therapy in patients with colorectal cancer using a quantitative ctDNA test for methylated BCAT1/IKZF1. Mol. Oncol. 2022, 16, 2031–2041. [Google Scholar] [CrossRef]
- Malapelle, U.; Buono, M.; Pisapia, P.; Russo, G.; Tufano, R.; Pepe, F.; Rolfo, C.; Troncone, G. Circulating tumor DNA in cancer: Predictive molecular pathology meets mathematics. Crit. Rev. Oncol. Hematol. 2021, 163, 103394. [Google Scholar] [CrossRef]
- Galant, N.; Nicoś, M.; Kuźnar-Kamińska, B.; Krawczyk, P. Variant Allele Frequency Analysis of Circulating Tumor DNA as a Promising Tool in Assessing the Effectiveness of Treatment in Non-Small Cell Lung Carcinoma Patients. Cancers 2024, 16, 782. [Google Scholar] [CrossRef]
- Mouliere, F.; Chandrananda, D.; Piskorz, A.M.; Moore, E.K.; Morris, J.; Ahlborn, L.B.; Mair, R.; Goranova, T.; Marass, F.; Heider, K.; et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci. Transl. Med. 2018, 10, eaat4921. [Google Scholar] [CrossRef]
- Wan, J.C.M.; Heider, K.; Gale, D.; Murphy, S.; Fisher, E.; Mouliere, F.; Ruiz-Valdepenas, A.; Morris, J.; Chandrananda, D.; Marshall, A.; et al. ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci. Transl. Med. 2020, 12, eaaz8084. [Google Scholar] [CrossRef]
- Kustanovich, A.; Schwartz, R.; Peretz, T.; Grinshpun, A. Life and death of circulating cell-free DNA. Cancer Biol. Ther. 2019, 20, 1057–1067. [Google Scholar] [CrossRef]
- Sánchez-Herrero, E.; Serna-Blasco, R.; Robado de Lope, L.; González-Rumayor, V.; Romero, A.; Provencio, M. Circulating Tumor DNA as a Cancer Biomarker: An Overview of Biological Features and Factors That may Impact on ctDNA Analysis. Front. Oncol. 2022, 12, 943253. [Google Scholar] [CrossRef] [PubMed]
- Piana, D.; Iavarone, F.; De Paolis, E.; Daniele, G.; Parisella, F.; Minucci, A.; Greco, V.; Urbani, A. Phenotyping Tumor Heterogeneity through Proteogenomics: Study Models and Challenges. Int. J. Mol. Sci. 2024, 25, 8830. [Google Scholar] [CrossRef]
- Nagasaka, M.; Uddin, M.H.; Al-Hallak, M.N.; Rahman, S.; Balasubramanian, S.; Sukari, A.; Azmi, A.S. Liquid biopsy for therapy monitoring in early-stage non-small cell lung cancer. Mol. Cancer 2021, 20, 82. [Google Scholar] [CrossRef]
- Scher, H.I.; Jia, X.; de Bono, J.S.; Fleisher, M.; Pienta, K.J.; Raghavan, D.; Heller, G. Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: A reanalysis of IMMC38 trial data. Lancet Oncol 2009, 10, 233–239. [Google Scholar] [CrossRef]
- Krebs, M.G.; Sloane, R.; Priest, L.; Lancashire, L.; Hou, J.M.; Greystoke, A.; Ward, T.H.; Ferraldeschi, R.; Hughes, A.; Clack, G.; et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J. Clin. Oncol. 2011, 29, 1556–1563. [Google Scholar] [CrossRef]
- Aggarwal, C.; Meropol, N.J.; Punt, C.J.; Iannotti, N.; Saidman, B.H.; Sabbath, K.D.; Gabrail, N.Y.; Picus, J.; Morse, M.A.; Mitchell, E.; et al. Relationship among circulating tumor cells, CEA and overall survival in patients with metastatic colorectal cancer. Ann. Oncol. 2013, 24, 420–428. [Google Scholar] [CrossRef]
- Pascual, J.; Attard, G.; Bidard, F.C.; Curigliano, G.; De Mattos-Arruda, L.; Diehn, M.; Italiano, A.; Lindberg, J.; Merker, J.D.; Montagut, C.; et al. ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: A report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2022, 33, 750–768. [Google Scholar] [CrossRef]
- Krebs, M.G.; Malapelle, U.; André, F.; Paz-Ares, L.; Schuler, M.; Thomas, D.M.; Vainer, G.; Yoshino, T.; Rolfo, C. Practical Considerations for the Use of Circulating Tumor DNA in the Treatment of Patients With Cancer: A Narrative Review. JAMA Oncol. 2022, 8, 1830–1839. [Google Scholar] [CrossRef]
- Deng, Z.; Ma, X.; Zou, S.; Tan, L.; Miao, T. Innovative technologies and their clinical prospects for early lung cancer screening. Clin. Exp. Med. 2025, 25, 212. [Google Scholar] [CrossRef]
- Abbosh, C.; Frankell, A.M.; Harrison, T.; Kisistok, J.; Garnett, A.; Johnson, L.; Veeriah, S.; Moreau, M.; Chesh, A.; Chaunzwa, T.L.; et al. Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA. Nature 2023, 616, 553–562. [Google Scholar] [CrossRef]
- Trastuzumab Deruxtecan DESTINY for Some Cancers. Cancer Discov. 2020, 10, 898. [CrossRef] [PubMed]
- Verma, S.; Young, S.; Kennedy, T.A.C.; Carvalhana, I.; Black, M.; Baer, K.; Churchman, E.; Warner, A.; Allan, A.L.; Izaguirre-Carbonell, J.; et al. Detection of Circulating Tumor DNA After Stereotactic Ablative Radiotherapy in Patients With Unbiopsied Lung Tumors (SABR-DETECT). Clin. Lung Cancer 2024, 25, e87–e91. [Google Scholar] [CrossRef]
- Hong, T.H.; Hwang, S.; Dasgupta, A.; Abbosh, C.; Hung, T.; Bredno, J.; Walker, J.; Shi, X.; Milenkova, T.; Horn, L.; et al. Clinical Utility of Tumor-Naïve Presurgical Circulating Tumor DNA Detection in Early-Stage NSCLC. J. Thorac. Oncol. 2024, 19, 1512–1524. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wu, R.; Liu, X.; Xie, B.; Xie, C.; Li, S.; Wu, Z.; Zhang, Z.; Tang, Z.; Gu, L. Clinical application of ctDNA in early diagnosis, treatment and prognosis of patients with non-small cell lung cancer. Future. Oncol. 2024, 20, 2376513. [Google Scholar] [CrossRef]
- Li, N.; Wang, B.X.; Li, J.; Shao, Y.; Li, M.T.; Li, J.J.; Kuang, P.P.; Liu, Z.; Sun, T.Y.; Wu, H.Q.; et al. Perioperative circulating tumor DNA as a potential prognostic marker for operable stage I to IIIA non-small cell lung cancer. Cancer 2022, 128, 708–718. [Google Scholar] [CrossRef]
- Jung, H.A.; Ku, B.M.; Kim, Y.J.; Park, S.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Cho, J.H.; Kim, H.K.; Choi, Y.S.; et al. Longitudinal Monitoring of Circulating Tumor DNA From Plasma in Patients With Curative Resected Stages I to IIIA EGFR-Mutant Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2023, 18, 1199–1208. [Google Scholar] [CrossRef]
- Markou, A.N.; Londra, D.; Stergiopoulou, D.; Vamvakaris, I.; Potaris, K.; Pateras, I.S.; Kotsakis, A.; Georgoulias, V.; Lianidou, E. Preoperative Mutational Analysis of Circulating Tumor Cells (CTCs) and Plasma-cfDNA Provides Complementary Information for Early Prediction of Relapse: A Pilot Study in Early-Stage Non-Small Cell Lung Cancer. Cancers 2023, 15, 1877. [Google Scholar] [CrossRef]
- Onidani, K.; Shoji, H.; Kakizaki, T.; Yoshimoto, S.; Okaya, S.; Miura, N.; Sekikawa, S.; Furuta, K.; Lim, C.T.; Shibahara, T.; et al. Monitoring of cancer patients via next-generation sequencing of patient-derived circulating tumor cells and tumor DNA. Cancer Sci. 2019, 110, 2590–2599. [Google Scholar] [CrossRef]
- Maheswaran, S.; Sequist, L.V.; Nagrath, S.; Ulkus, L.; Brannigan, B.; Collura, C.V.; Inserra, E.; Diederichs, S.; Iafrate, A.J.; Bell, D.W.; et al. Detection of Mutations in EGFR in Circulating Lung-Cancer Cells. N. Engl. J. Med. 2008, 359, 366–377. [Google Scholar] [CrossRef]
- Liu, H.E.; Vuppalapaty, M.; Wilkerson, C.; Renier, C.; Chiu, M.; Lemaire, C.; Che, J.; Matsumoto, M.; Carroll, J.; Crouse, S.; et al. Detection of EGFR Mutations in cfDNA and CTCs, and Comparison to Tumor Tissue in Non-Small-Cell-Lung-Cancer (NSCLC) Patients. Front. Oncol. 2020, 10, 572895. [Google Scholar] [CrossRef]
- Peng, M.; Huang, Q.; Yin, W.; Tan, S.; Chen, C.; Liu, W.; Tang, J.; Wang, X.; Zhang, B.; Zou, M.; et al. Circulating Tumor DNA as a Prognostic Biomarker in Localized Non-small Cell Lung Cancer. Front. Oncol. 2020, 10, 561598. [Google Scholar] [CrossRef]
- Xia, L.; Mei, J.; Kang, R.; Deng, S.; Chen, Y.; Yang, Y.; Feng, G.; Deng, Y.; Gan, F.; Lin, Y.; et al. Perioperative ctDNA-Based Molecular Residual Disease Detection for Non-Small Cell Lung Cancer: A Prospective Multicenter Cohort Study (LUNGCA-1). Clin. Cancer Res. 2022, 28, 3308–3317. [Google Scholar] [CrossRef]
- Waldeck, S.; Mitschke, J.; Wiesemann, S.; Rassner, M.; Andrieux, G.; Deuter, M.; Mutter, J.; Lüchtenborg, A.M.; Kottmann, D.; Titze, L.; et al. Early assessment of circulating tumor DNA after curative-intent resection predicts tumor recurrence in early-stage and locally advanced non-small-cell lung cancer. Mol. Oncol. 2022, 16, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.T.; Heeke, S.; Sujit, S.; Vokes, N.; Zhang, J.; Aminu, M.; Lam, V.K.; Vaporciyan, A.; Swisher, S.G.; Godoy, M.C.B.; et al. Circulating tumor DNA and radiological tumor volume identify patients at risk for relapse with resected, early-stage non-small-cell lung cancer. Ann. Oncol. 2024, 35, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.; Lai, G.G.Y.; Saw, S.P.L.; Chua, K.L.M.; Takano, A.; Ong, B.H.; Koh, T.P.T.; Jain, A.; Tan, W.L.; Ng, Q.S.; et al. Detection of circulating tumor DNA with ultradeep sequencing of plasma cell-free DNA for monitoring minimal residual disease and early detection of recurrence in early-stage lung cancer. Cancer 2024, 130, 1758–1765. [Google Scholar] [CrossRef]
- Walls, G.M.; McConnell, L.; McAleese, J.; Murray, P.; Lynch, T.B.; Savage, K.; Hanna, G.G.; de Castro, D.G. Early circulating tumour DNA kinetics measured by ultra-deep next-generation sequencing during radical radiotherapy for non-small cell lung cancer: A feasibility study. Radiat. Oncol. 2020, 15, 132. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, J.T.; Gao, X.; Chen, Z.Y.; Yan, B.; Tan, P.X.; Yang, X.R.; Gao, W.; Gong, Y.; Tian, Z.; et al. Dynamic circulating tumor DNA during chemoradiotherapy predicts clinical outcomes for locally advanced non-small cell lung cancer patients. Cancer Cell 2023, 41, 1763–1773.e4. [Google Scholar] [CrossRef]
- Lebow, E.S.; Shaverdian, N.; Eichholz, J.E.; Kratochvil, L.B.; McCune, M.; Murciano-Goroff, Y.R.; Jee, J.; Eng, J.; Chaft, J.E.; Kris, M.G.; et al. ctDNA-based detection of molecular residual disease in stage I-III non-small cell lung cancer patients treated with definitive radiotherapy. Front. Oncol. 2023, 13, 1253629. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Huang, J.; Wang, B.; Liu, Z.; He, J.; Liang, W. The role of liquid biopsy in predicting post-operative recurrence of non-small cell lung cancer. J. Thorac. Dis. 2018, 10, S838–S845. [Google Scholar] [CrossRef]
- Moding, E.J.; Liu, Y.; Nabet, B.Y.; Chabon, J.J.; Chaudhuri, A.A.; Hui, A.B.; Bonilla, R.F.; Ko, R.B.; Yoo, C.H.; Gojenola, L.; et al. Circulating Tumor DNA Dynamics Predict Benefit from Consolidation Immunotherapy in Locally Advanced Non-Small Cell Lung Cancer. Nat. Cancer 2020, 1, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Guo, W.; Zhang, F.; Lv, F.; Ji, Y.; Peng, Y.; Chen, X.; Bao, H.; Xu, Y.; Shao, Y.; et al. Dynamic recurrence risk and adjuvant chemotherapy benefit prediction by ctDNA in resected NSCLC. Nat. Commun. 2021, 12, 6770. [Google Scholar] [CrossRef]
- Ohara, S.; Suda, K.; Sakai, K.; Nishino, M.; Chiba, M.; Shimoji, M.; Takemoto, T.; Fujino, T.; Koga, T.; Hamada, A.; et al. Prognostic implications of preoperative versus postoperative circulating tumor DNA in surgically resected lung cancer patients: A pilot study. Transl. Lung Cancer Res. 2020, 9, 1915–1923. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Mei, C.; Nan, X.; Hui, L. Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: A qualitative study. Gene 2016, 590, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Gao, R.; Fu, W.; Li, C.; Huo, Z.; Gao, Y.; Lu, Y.; Li, F.; Ge, F.; Tu, H.; et al. Accuracy of minimal residual disease detection by circulating tumor DNA profiling in lung cancer: A meta-analysis. BMC Med. 2023, 21, 180. [Google Scholar] [CrossRef]
- Naso, J.R.; Yip, S.; Hughesman, C.; Melosky, B.; Dowhy, T.; McConechy, M.K.; English, J.C.; Brasher, P.M.A.; Choi, J.; Grant, K.; et al. Confirmation of Recurrent Lung Cancer Following Resection Using Liquid Biopsy, a Proof-of-Concept Real-World Study. Curr. Oncol. 2024, 31, 4052–4062. [Google Scholar] [CrossRef]
- Oh, Y.; Yoon, S.M.; Lee, J.; Park, J.H.; Lee, S.; Hong, T.; Chung, L.I.; Sudhaman, S.; Riddell, T.; Palsuledesai, C.C.; et al. Personalized, tumor-informed, circulating tumor DNA assay for detecting minimal residual disease in non-small cell lung cancer patients receiving curative treatments. Thorac. Cancer 2024, 15, 1095–1102. [Google Scholar] [CrossRef]
- Gale, D.; Heider, K.; Ruiz-Valdepenas, A.; Hackinger, S.; Perry, M.; Marsico, G.; Rundell, V.; Wulff, J.; Sharma, G.; Knock, H.; et al. Residual ctDNA after treatment predicts early relapse in patients with early-stage non-small cell lung cancer. Ann. Oncol. 2022, 33, 500–510. [Google Scholar] [CrossRef]
- Ding, H.; Yuan, M.; Yang, Y.; Xu, X.S. Identifying key circulating tumor DNA parameters for predicting clinical outcomes in metastatic non-squamous non-small cell lung cancer after first-line chemoimmunotherapy. Nat. Commun. 2024, 15, 6862. [Google Scholar] [CrossRef]
- Stadler, J.C.; Belloum, Y.; Deitert, B.; Sementsov, M.; Heidrich, I.; Gebhardt, C.; Keller, L.; Pantel, K. Current and Future Clinical Applications of ctDNA in Immuno-Oncology. Cancer Res. 2022, 82, 349–358. [Google Scholar] [CrossRef]
- Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014, 6, 3007094. [Google Scholar] [CrossRef] [PubMed]
- Chabon, J.J.; Hamilton, E.G.; Kurtz, D.M.; Esfahani, M.S.; Moding, E.J.; Stehr, H.; Schroers-Martin, J.; Nabet, B.Y.; Chen, B.; Chaudhuri, A.A.; et al. Integrating genomic features for non-invasive early lung cancer detection. Nature 2020, 580, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Ruglioni, M.; Petrini, I.; Crucitta, S.; Sbrana, A.; Luculli, G.I.; Sadeghi Gol, L.; Forte, C.; Chella, A.; Rolfo, C.; Danesi, R.; et al. Clinical characteristics of EGFR-ctDNA shedders in EGFR-mutant NSCLC patients. Transl. Oncol. 2025, 52, 102228. [Google Scholar] [CrossRef] [PubMed]
Search Date | 10 December 2024 |
---|---|
Databases searched | Pubmed |
Keywords used | “ctDNA” and “early stage” and “NSCLC” |
Time period | 1 January 2000 to 30 November 2024 |
Eligibility criteria | Only peer reviewed: clinical trial (randomized, prospective, or retrospective) or original article, only written in English |
Screening process | The abstracts found through this search were independently examined by two authors (C.S. and M.C.), and in case of any disagreements, a third author (F.L.) was consulted for resolution. |
First Author | Year | Country | Study Design | Outcome in ctDNA Detection |
---|---|---|---|---|
Gale [50] | 2022 | UK | Prospective | The median time between ctDNA detection and clinically confirmed recurrence was approximately seven months. ctDNA positivity at a predefined landmark timepoint (ranging from two weeks to four months following curative treatment) was associated with poorer prognosis. (HR 5.48, p = 0.00029 for OS; HR 14.8, p < 0.0001 for DFS) |
Jung [29] | 2023 | Korea | Prospective | Three-year DFS ctDNA-positive pre-surgery negative, after resection 84%, ctDNA-positive pre-surgery and remained positive at 78% |
Liang [42] | 2019 | China | Prospective | ctDNA or CTCs after surgery associated with poorer DFS (ctDNA HR = 8.15, 95%CI = 2.11–31.50, p = 0.002; CTCs HR = 3.37, 95%CI = 2.28–4.96; p < 0.001 |
Qiu [44] | 2021 | China | Prospective | After surgery, 18 of 85 patients (21.2%) had ctDNA+, with significantly higher risk of relapse (HR = 4.0; 95%CI = 2.0–8.0; p < 0.001). After adjuvant therapy, 8 out of 64 patients had ctDNA+; risk of relapse was higher for those patients (HR = 3.2; 95%CI, 1.3–8.2; p < 0.05) |
Naso [48] | 2024 | Canada | Prospective | Here, 2 out of 24 patients were ctDNA+ within nine months after treatment and had a 15-fold higher probability of recurrence compared to those with negative ct-DNA (HR for DFS 15.0, 95% CI: 1.0–253.0, p = 0.010 |
Oh [49] | 2024 | USA | Prospective | Patients with ctDNA+ had a significantly worse DFS (HR = 27, 95%CI = 5.6–127, p < 0.0001) |
Lebow [41] | 2023 | USA | Prospective | ctDNA could anticipate radiological progression of about five months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sassorossi, C.; Evangelista, J.; Stefani, A.; Chiappetta, M.; Martino, A.; Campanella, A.; De Paolis, E.; Nachira, D.; Del Re, M.; Guerrera, F.; et al. Genomics in Lung Cancer: A Scoping Review of the Role of ctDNA in Non-Advanced Non-Small-Cell Lung Cancer in the Prediction of Prognosis After Multimodality Therapeutic Approaches. Genes 2025, 16, 962. https://doi.org/10.3390/genes16080962
Sassorossi C, Evangelista J, Stefani A, Chiappetta M, Martino A, Campanella A, De Paolis E, Nachira D, Del Re M, Guerrera F, et al. Genomics in Lung Cancer: A Scoping Review of the Role of ctDNA in Non-Advanced Non-Small-Cell Lung Cancer in the Prediction of Prognosis After Multimodality Therapeutic Approaches. Genes. 2025; 16(8):962. https://doi.org/10.3390/genes16080962
Chicago/Turabian StyleSassorossi, Carolina, Jessica Evangelista, Alessio Stefani, Marco Chiappetta, Antonella Martino, Annalisa Campanella, Elisa De Paolis, Dania Nachira, Marzia Del Re, Francesco Guerrera, and et al. 2025. "Genomics in Lung Cancer: A Scoping Review of the Role of ctDNA in Non-Advanced Non-Small-Cell Lung Cancer in the Prediction of Prognosis After Multimodality Therapeutic Approaches" Genes 16, no. 8: 962. https://doi.org/10.3390/genes16080962
APA StyleSassorossi, C., Evangelista, J., Stefani, A., Chiappetta, M., Martino, A., Campanella, A., De Paolis, E., Nachira, D., Del Re, M., Guerrera, F., Boldrini, L., Urbani, A., Margaritora, S., Minucci, A., Bria, E., & Lococo, F. (2025). Genomics in Lung Cancer: A Scoping Review of the Role of ctDNA in Non-Advanced Non-Small-Cell Lung Cancer in the Prediction of Prognosis After Multimodality Therapeutic Approaches. Genes, 16(8), 962. https://doi.org/10.3390/genes16080962